首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Steroidogenic acute regulatory protein (StAR) facilitates delivery of cholesterol to the inner mitochondrial membranes. StAR is imported into mitochondria and processed to a mature form by cleavage of the N-terminal mitochondrial targeting sequence. We produced His-tagged (His-tag StAR) constructs lacking the N-terminal 62 amino acids that encode the mitochondrial targeting sequence and examined their steroidogenic activity in intact cells and on isolated mitochondria. His-tag StAR proteins stimulated pregnenolone synthesis to the same extent as wild-type StAR when expressed in COS-1 cells transfected with the cholesterol side-chain cleavage system. His-tag StAR was diffusely distributed in the cytoplasm of transfected COS-1 cells, whereas wild-type StAR was localized to mitochondria. There was no evidence at the light or electron microscope levels for selective localization of His-tag StAR protein to mitochondrial membranes. We established an assay system using mitochondria isolated from bovine corpora lutea and purified recombinant His-tag StAR proteins expressed in E. coli. Recombinant His-tag StAR stimulated pregnenolone production in a dose- and time-dependent manner, functioning at nanomolar concentrations. A point mutant of StAR (A218V) that causes lipoid congenital adrenal hyperplasia was incorporated into the His-tag protein. This mutant was steroidogenically inactive in COS-1 cells and on isolated mitochondria. Our observations conclusively document that StAR acts on the outside of mitochondria, independent of mitochondrial import.  相似文献   

2.
Steroidogenic acute regulatory protein (StAR) plays a critical role in steroidogenesis by enhancing the delivery of substrate cholesterol from the outer mitochondrial membrane to the cholesterol side chain cleavage enzyme system on the inner membrane. A recombinant StAR protein lacking the first N-terminal 62 amino acid residues that includes the mitochondrial targeting sequence was shown to stimulate the transfer of cholesterol and beta-sitosterol from liposomes to heat-treated mitochondria in a dose-, time-, and temperature-dependent manner. A recombinant mutant StAR protein that cannot stimulate steroidogenesis by isolated mitochondria did not promote sterol transfer. Unlike the more promiscuous lipid transfer protein, sterol carrier protein 2 (SCP2), StAR did not stimulate phosphatidylcholine transfer in our assay system. The recombinant StAR protein increased cholesterol transfer to heat-treated microsomes as well as to heat- and trypsin-treated mitochondria. These observations demonstrate that StAR has sterol transfer activity, which may reflect an ability to enhance desorption of cholesterol from sterol-rich donor membranes. We suggest that the ability of StAR to promote sterol transfer explains its steroidogenic activity.  相似文献   

3.
The Steroidogenic Acute Regulatory (StAR) protein has been put forth as the rapidly synthesized, cycloheximide-sensitive protein that is required for the transport of cholesterol to the inner mitochondrial membrane and the P450scc enzyme and thereby acutely regulates steroidogenesis in steroidogenic tissues. In this study, several of the factors that may be required for StAR activity were examined using an in vitro system. Lysates from StAR-transfected COS-1 cells were added to mitochondria isolated from MA-10 Leydig tumor cells. Results obtained demonstrated that StAR-containing cell lysate increased steroidogenesis in isolated mitochondria, but failed to do so in the presence of m-CCCP, apyrase, or AMP-PNP, suggesting that StAR function requires ATP hydrolysis as well as an electrochemical gradient for maximal steroidogenic activity.  相似文献   

4.
In adrenal glomerulosa cells, angiotensin II (Ang II) and potassium stimulate aldosterone synthesis through activation of the calcium messenger system. The rate-limiting step in steroidogenesis is the transfer of cholesterol to the inner mitochondrial membrane. This transfer is believed to depend upon the presence of the steroidogenic acute regulatory (StAR) protein. The aim of this study was 1) to examine the effect of changes in cytosolic free calcium concentration and of Ang II on intramitochondrial cholesterol and 2) to study the distribution of StAR protein in submitochondrial fractions during activation by Ca2+ and Ang II. To this end, freshly prepared bovine zona glomerulosa cells were submitted to a high cytosolic Ca2+ clamp (600 nM) or stimulated with Ang II (10 nM) for 2 h. Mitochondria were isolated and subfractionated into outer membranes, inner membranes (IM), and contact sites (CS). Stimulation of intact cells with Ca2+ or Ang II led to a marked, cycloheximide-sensitive increase in cholesterol in CS (to 143 +/- 3. 2 and 151.1 +/- 18.1% of controls, respectively) and in IM (to 119 +/- 5.1 and 124.5 +/- 6.5% of controls, respectively). Western blot analysis revealed a cycloheximide-sensitive increase in StAR protein in mitochondrial extracts of Ca2+-clamped glomerulosa cells (to 159 +/- 23% of controls). In submitochondrial fractions, there was a selective accumulation of StAR protein in IM following stimulation with Ca2+ (228 +/- 50%). Similarly, Ang II increased StAR protein in IM, and this effect was prevented by cycloheximide. In contrast, neither Ca2+ nor Ang II had any effect on the submitochondrial distribution of cytochrome P450scc and 3beta-hydroxysteroid dehydrogenase isomerase. The intramitochondrial presence of the latter enzyme was further confirmed by immunogold staining in rat adrenal fasciculata cells and by immunoblot analysis in MA-10 mouse testicular Leydig cells. These findings demonstrate that under acute stimulation with Ca2+-mobilizing agents, newly synthesized StAR protein accumulates in IM after transiting through CS. Moreover, our results suggest that the import of StAR protein into IM may be associated with cholesterol transfer, thus promoting precursor supply to the two first enzymes of the steroidogenic cascade within the mitochondria and thereby activating mineralocorticoid synthesis.  相似文献   

5.
6.
Steroidogenic acute regulatory protein (StAR), a 30-kDa protein involved in the transport of cholesterol to inner mitochondrial membrane during stimulation of steroid hormone biosynthesis, has recently been cloned from human adrenals and MA-10 mouse Leydig tumor cells. We examined the regulation of StAR mRNA accumulation upon induction of steroidogenesis in immortalized rat granulosa cells. Granulosa cells were transfected with SV40 DNA alone (POGS5); with SV40 DNA and Ha-ras oncogene (POGRS1); with SV40 DNA, Ha-ras oncogene and LH/CG receptor (GLHR15) or with FSH receptor (GFSHR17) or with the beta 2-adrenergic receptor (G beta 2AR13) expression plasmids. Cells were cultured to confluency and then stimulated for 24 h with oFSH (4 nM), hCG (2.4 nM), isoproterenol (10 microM) or forskolin (50 microM). By quantitative RT-PCR, StAR mRNA was undetectable in non-steroidogenic cells (transfected with SV40 DNA alone, POGS5) either in the presence or in the absence of forskolin. In contrast, variable amount of the message was detected in all steroidogenic cell lines cotransfected with SV40 DNA and Ha-ras. Moreover, an increase in the StAR mRNA expression was evident in all steroidogenic cells upon stimulation with their respective agonists, concomitantly with enhanced progesterone production. The RT-PCR product was sequenced and the 379 base pairs of rat StAR were found to be 93% and 86% identical to mouse and human cDNA, respectively. The deduced 126 amino acid sequence was 95%, 88% and 88% identical to the mouse, human and bovine deduced protein sequences. We conclude that StAR message is expressed only in the steroidogenic rat granulosa cells and can be upregulated by FSH, hCG, isoproterenol and forskolin in the appropriate cell lines. In addition, we find that the rat StAR cDNA exhibit a high degree of homology with the mouse and human sequences.  相似文献   

7.
Rat ovarian genes induced by the treatment of immature rats with pregnant mare serum gonadotropin (PMSG) were isolated by a subtraction cloning method. Amongst them was obtained a probable rat homologue of steroidogenic acute regulatory protein (StAR), which has been recently identified as a protein that is an acute regulator of the rate limiting transfer of cholesterol from the outer to the inner mitochondrial membrane. Structure of rat StAR was determined by nucleotide sequence analysis. Northern blot analysis revealed that StAR mRNA levels were rapidly and strongly increased by PMSG/hCG but not by FSH. In situ hybridization revealed that the expression of StAR mRNA was strongly induced by PMSG in theca interna cells as well as in corpora lutea. These findings indicate that expression of StAR mRNA is restricted to and induced in the ovarian steroidogenic cell types where cholesterol is used as a substrate for synthesis of steroid hormones.  相似文献   

8.
StAR protein may facilitate rapid transfer of cholesterol from the outer to the inner mitochondrial membrane, the site at which cholesterol is converted to pregnenolone by the cholesterol side chain cleavage complex. We have studied the effect of ACTH treatment on StAR mRNA and protein levels in bovine adrenocortical cells in primary culture. Cells were initially cultured for 3 days after isolation, and then treated with ACTH (10(-8) M) for various times up to 24 hours. Northern analysis of total BAC mRNA, using a [alpha32P]-labelled cDNA probe encoding a 5' region of bovine StAR mRNA, revealed two principal hybridising species of 1.6 and 3.0 kb. Western immunoblot analysis revealed a principal band at 30 kDa. Levels of both StAR mRNA and protein showed an increase at 1 hour, reached a maximum at around 6 hours and declined to basal levels at 24 hours. Cortisol secretion (measured by RIA) showed a similar change over the same period. From these results it appears that StAR mRNA and protein levels in BAC are acutely regulated in concert with ACTH-stimulated cortisol secretion.  相似文献   

9.
The synthesis of heat shock proteins (HSPs) rapidly increases in cells under a broad range of stress conditions in addition to heat shock. Previous studies have shown that the induction of HSPs severely impairs the ability of steroidogenic cells to synthesize steroids in response to acute stimulation. De novo synthesis of the steroidogenic acute regulatory (StAR) protein has been shown to be indispensable for acute steroid hormone biosynthesis; however, the effect of HSP induction on the synthesis of the StAR protein has not yet been studied. In the present study we investigated whether HSP induction might influence the steroidogenic activity of MA-10 mouse Leydig tumor cells, and whether this effect may involve the synthesis of StAR protein. MA-10 cells exposed to 45 C for 10 min and allowed to recover for 2 h at 37 C displayed a 6-fold increase in HSP-70 at 3 h postrecovery and a 20-fold increase in this protein at 6 h postrecovery. This heat shock regimen also acutely inhibited both progesterone production and StAR protein synthesis in MA-10 cells in response to LH and cAMP analog stimulation. The activity and quantity of cytochrome P450 side-chain cleavage and 3beta-hydroxysteroid dehydrogenase were not affected by this heat shock treatment, indicating that the loss of steroidogenic capacity was not a result of inhibition of the enzymes involved in the conversion of cholesterol to progesterone. The results suggest that the previously observed antisteroidogenic effects of heat shock treatment may be due mainly to the acute inhibition of StAR protein synthesis.  相似文献   

10.
MLN64 is a protein that is highly expressed in certain breast carcinomas. The C terminus of MLN64 shares significant homology with the steroidogenic acute regulatory protein (StAR), which plays a key role in steroid hormone biosynthesis by enhancing the intramitochondrial translocation of cholesterol to the cholesterol side-chain cleavage enzyme. We tested the ability of MLN64 to stimulate steroidogenesis by using COS-1 cells cotransfected with plasmids expressing the human cholesterol side-chain cleavage enzyme system and wild-type and mutant MLN64 proteins. Wild-type MLN64 increased pregnenolone secretion in this system 2-fold. The steroidogenic activity of MLN64 was found to reside in the C terminus of the protein, because constructs from which the C-terminal StAR homology domain was deleted had no steroidogenic activity. In contrast, removal of N-terminal sequences increased MLN64's steroidogenesis-enhancing activity. MLN64 mRNA was found in many human tissues, including the placenta and brain, which synthesize steroid hormones but do not express StAR. Western blot analysis revealed the presence of lower molecular weight immunoreactive MLN64 species that contain the C-terminal sequences in human tissues. Homologs of both MLN64 and StAR were identified in Caenorhabditis elegans, indicating that the two proteins are ancient. Mutations that inactivate StAR were correlated with amino acid residues that are identical or similar among StAR and MLN64, indicating that conserved motifs are important for steroidogenic activity. We conclude that MLN64 stimulates steroidogenesis by virtue of its homology to StAR.  相似文献   

11.
Interferon-gamma (IFNgamma) is an immunomodulating cytokine that has profound effects on reproductive function. IFNgamma inhibits steroidogenesis both in vivo and in vitro. The mechanism by which IFNgamma inhibits Leydig cell steroidogenesis remains unclear. In the present study, we evaluated the effect of IFNgamma on the expression and regulation of the steroidogenic acute regulatory protein (StAR) gene in primary cultures of rat Leydig cells. StAR facilitates the efficient production of steroid hormone by regulating the translocation of cholesterol from the outer to the inner mitochondrial membrane, the site of the cytochrome P450 side-chain cleavage (P450scc) enzyme system that converts cholesterol to pregnenolone. IFNgamma inhibited hCG-induced StAR messenger RNA (mRNA) levels in a dose-dependent manner. The addition of IFNgamma in a concentration of 500 U/ml decreased hCG-induced 3.8- and 1.7-kilobase StAR mRNA by 78% and 70%, respectively. IFNgamma also reduced hCG-stimulated P450scc mRNA levels by 69%. The inhibitory effects of IFNgamma on StAR mRNA levels were confirmed by ribonuclease protection assay. As early as 12 h after the addition of IFNgamma, hCG-induced StAR mRNA levels decreased by more than 44%. To evaluate the effects of IFNgamma on StAR protein levels, Western blot analyses were performed. hCG in a concentration of 10 ng/ml increased StAR protein by 5.6-fold. Treatment of Leydig cells with IFNgamma (500 U/ml) decreased hCG-induced StAR protein by 44%. In contrast, interleukin-1 and murine tumor necrosis factor-alpha reduced hCG-induced P450scc mRNA expression without inhibiting StAR mRNA or protein levels. In conclusion, IFNgamma inhibits Leydig cell steroidogenesis by down-regulating StAR gene expression and protein production.  相似文献   

12.
We examined the topography of the MA-10 Leydig tumor cell mitochondrial peripheral-type benzodiazepine receptor (PBR). In previous studies, the 18 kDa PBR was found to be functionally associated with the voltage-dependent anion channel, located in the junctions between outer and inner membranes. Transmission electron (TEM) and atomic force microscopy (AFM) of immunogold labeled PBR on Leydig cell mitochondrial preparations showed that the 18 kDa PBR protein is organized in clusters of 4-6 molecules. Addition of hCG to Leydig cells induces a rapid, within 30 sec, increase in PBR ligand binding and morphological changes, namely redistribution of PBR molecules in large clusters (>7 particles). These hCG-induced changes were inhibited by a cAMP-dependent protein kinase inhibitor and by the benzodiazepine flunitrazepam. AFM further demonstrated the rapid reorganization of the mitochondrial membrane, where the formation of contacts between the outer and the inner mitochondrial membrane may facilitate cholesterol transfer.  相似文献   

13.
14.
The transfer of cholesterol from the outer to the inner mitochondrial membrane, where side-chain cleavage occurs to form pregnenolone, is a crucial event in the regulation of steroidogenesis and recently has been demonstrated to be mediated by steroidogenic acute regulatory protein (StAR). We generated a partial porcine StAR complementary DNA (280 bp) by RT-PCR and used the corresponding antisense riboprobe to quantify the control of StAR gene expression by FSH and insulin-like growth factor I (IGF-I) in hormonally responsive swine granulosa cells, which typically manifest synergistic steroidogenic stimulation by these two dominant intrafollicular regulators. RNase protection assays were implemented to investigate the time course of the actions of FSH (100 ng/ml), IGF-I (100 ng/ml), and FSH plus IGF-I on StAR messenger RNA accumulation in serum-free cultures granulosa cells. Treatment with FSH (1.6-fold) or IGF-I (2.7-fold) alone had a small but consistent stimulatory effect on StAR message accumulation (corrected for 18S ribosomal RNA in each lane) at 48 h, whereas only IGF-I stimulated StAR protein expression (at least 6-fold as assessed by Western blot). Notably, the combined effect of FSH plus IGF-I was strongly synergistic and already significant by 24 h and maximal at 48 h (P < 0.001). Protein kinase A agonist, 8-bromoadenosine 3',5'-cAMP (8-bromo-cAMP) (1 mM) alone elicited a 3.5-fold increase in StAR message and more than 3.7-fold increase in StAR protein expression by 48 h. The combination of IGF-I and FSH or 8-bromo-cAMP evoked a 26- to 40-fold (P < 0.001) synergistic rise in StAR message accumulation. StAR protein also showed a similar synergistic pattern of expression driven by IGF-I and FSH or 8-bromo-cAMP, namely a greater than 56- to 60-fold increase. In summary, two distinct first messenger regulatory molecules, FSH and IGF-I, interact synergistically to induce amplification of StAR messenger RNA and protein expression in serum-free monolayer cultures of immature (swine) granulosa cells.  相似文献   

15.
In steroid-synthesizing cells, like the MA-10 mouse tumor Leydig cells, the peripheral-type benzodiazepine receptor (PBR) is an outer mitochondrial membrane protein involved in the regulation of cholesterol transport from the outer to the inner mitochondrial membrane, the rate-determining step in steroid biosynthesis. Expression of PBR in Escherichia coli DE3 cells, which have no PBR, no cholesterol, and do not make steroids, induced the ability to take up cholesterol in a time-dependent, temperature-sensitive, and energy-independent manner. These cells took up no other steroids tested. Addition of the high affinity PBR ligand PK 11195 to cholesterol-loaded membranes, obtained from cells transfected with PBR, resulted in the release of the uptaken cholesterol. Expression in DE3 cells of mutant PBRs demonstrated that deletions in the cytoplasmic carboxy-terminus dramatically reduced the cholesterol uptake function of PBR, although it retained full capacity to bind PK 11195. Site-directed mutagenesis in the carboxy-terminal region of PBR demonstrated that bacteria expressing the mutant PBR proteins PBR(Y153S) and PBR(R156L) do not accumulate cholesterol, suggesting that amino acids Y153 and R156 are involved in the interaction of the receptor with cholesterol. Considering these results, we postulate the existence of a common cholesterol recognition/interaction amino acid consensus pattern (-L/V-(X)(1-5)-Y-(X)(1-5)-R/K-). Indeed, we found this amino acid consensus pattern in all proteins shown to interact with cholesterol. In conclusion, these data suggest that the expression of PBR confers the ability to take up and release, upon ligand activation, cholesterol. Considering the widespread occurrence of this protein and its tissue and cell specific subcellular localization, these results suggest a more general role of PBR in intracellular cholesterol transport and compartmentalization.  相似文献   

16.
17.
Exposure to disease or injury often results in impaired reproductive activity accompanied by decreased testosterone levels. After immune activation, the cytokine interleukin 1-beta (IL-1beta) circulates in high concentrations, and its exogenous administration evokes many of the sequelae of immune activation. Previously, we have shown that the administration of this cytokine into the cerebral ventricles blunts hCG-stimulated testosterone secretion. This effect, though time-dependent, occurs before significant elevation of interleukin 6 in the peripheral bloodstream, does not depend on adrenal activation, and/or changes in LH concentrations, leading us to hypothesize a direct connection between the brain and testis. To explore this mechanism further, we isolated testicular tissue from rats treated intracerebroventricularly (icv) with vehicle or IL-1beta 30 or 90 min before they were killed. We found that in vivo cytokine treatment blunted ex vivo testosterone secretion in response to hCG, showing that the mechanism is independent of circulating cytokines. Though hCG binding was moderately reduced by icv IL-1beta in these preparations, the extent of this inhibition did not explain our observations. As the first acutely and hormonally regulated step in the biosynthesis of testosterone is the transfer of cholesterol into the inner mitochondrial membrane, which is mediated by steroidogenic acute regulatory (StAR) protein, we hypothesized that the rapid effects of icv IL-1beta on testicular responsiveness to hCG might be due to reduced levels of StAR. We report here that StAR protein was indeed reduced in Leydig cells isolated from rats treated in vivo with IL-1beta. Furthermore, treatment with a water-permeable form of cholesterol that bypasses the requirement for StAR partially restored hCG-stimulated testosterone secretion from testes isolated from rats treated icv with IL-1beta. Taken together, our data indicate that StAR plays a role in the suppression of testicular function evoked by central administration of IL-1beta.  相似文献   

18.
A protein of 33 kDa (p33) that tightly binds to the globular domains of the first complement component, C1q, is thought to serve as the major C1q receptor (gC1qR) on B cells, neutrophils, and mast cells. However, the cellular routing and the subcellular localization of p33/gC1qR are unknown. We have performed confocal laser-scanning microscopy and found that p33/gC1qR is present in intracellular compartments, where it colocalizes with the mitochondrial marker protein, pyruvate dehydrogenase. No surface staining for p33/gC1qR on endothelial EA.hy926 cells was observed. A fusion protein of the p33/gC1qR presequence with green fluorescent protein translocated to the mitochondria of transfected COS-7 cells. Concomitantly, a 6-kDa portion of the fusion protein was proteolytically removed. The 33 amino-terminal residues of the presequence proved sufficient to direct reporter constructs to mitochondria. Association of p33/gC1qR with mitoplasts indicated that the mature protein of 209 residues resides in the matrix and/or the inner membrane of mitochondria. Immunocytochemistry of fetal mice tissues revealed a ubiquitous expression of p33/gC1qR, most prominently in tissues that are rich in mitochondria. Thus, the candidate complement receptor p33/gC1qR of intact cells cannot interact with plasma C1q due to mutually exclusive localizations of the components. The functional role of p33/gC1qR needs to be reconsidered.  相似文献   

19.
Apoptosis inhibits steroid biosynthesis, but it is not clear how the Steroidogenic Acute Regulatory (StAR) protein, is affected. To characterize StAR expression during apoptosis, mouse MA-10 Leydig tumor cells were treated with ethane dimethane sulfonate (EDS), an inducer of apoptosis, and the metal ion chelator NNN'N'-tetrakis-(2-pyridylmethyl)ethylenediamine (TPEN), an inducer of cell death. Both chemicals induced cell death and similarly inhibited dbcAMP-stimulated steroidogenesis and accumulation of the 30 kDa form of StAR. Utilizing the dye JC-1, it was found that TPEN and EDS also impaired the mitochondrial electrochemical potential (delta psi). In Sertoli cells, which also express StAR, EDS induced cell death and attenuated StAR expression. We conclude 1) steroidogenesis and accumulation of mature StAR protein are inhibited as a consequence of the induction of apoptosis; 2) reduced levels of StAR may be partially attributed to inhibition of import because of the loss of delta psi; 3) loss of steroidogenesis is probably due to loss of StAR synthesis and disruption of delta psi.  相似文献   

20.
Transforming growth factor betas (TGFbetas) constitute a family of dimeric proteins that regulate growth and differentiation of many cell types. TGFbeta1 is also a potent autocrine regulator of adrenocortical steroidogenesis. We have recently shown that in primary cultures of bovine fasciculo-reticularis cells, the main target of TGFbeta is the steroidogenic acute relay protein (StAR), a key protein necessary for intramitochondrial cholesterol transport. Here, we show that StAR expression is also inhibited by TGFbeta1 in the human adrenocortical carcinoma cell line NCI-H295R. This inhibitory effect is mediated by Smad proteins. Indeed, we found that overexpression of wild-type Smad3 inhibited endogenous StAR mRNA expression while overexpression of a dominant negative Smad3 protein reversed the inhibitory effect of TGFbeta1 on StAR mRNA expression. Taken together, these results demonstrate that the Smad3 protein is involved in TGFbeta-dependent regulation of steroidogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号