首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Correlation between material properties of bulk p-GaN layers grown on undoped GaN and device performance of InGaN/GaN blue light-emitting diodes (LEDs) as a function of p-GaN growth temperature were investigated. The p-GaN layers of both structures grown by metal-organic chemical-vapor deposition were heavily doped with Mg. As the growth temperature of the bulk p-GaN layer increased up to 1,080°C, NA-ND increased. However, above 1,110°C, NA-ND sharply decreased, while the fluctuation of Mg concentration ([Mg]) increased. At this time, a peculiar surface, which originated from inversion domain boundaries (IDBs), was clearly observed in the bulk p-GaN layer. The IDBs were not found in all LEDs because the p-GaN contact layer was relatively thin. The change in photoluminescence emission from the ultraviolet band to blue band is found to be associated with the fluctuation of [Mg] and IDBs in bulk p-GaN layers. The LED operating voltage and reverse voltage improved gradually up to the p-GaN contact-layer growth temperature of 1,080°C. However, the high growth temperature of 1,110°C, which could favor the formation of IDBs in the bulk p-GaN layer, yielded poorer reverse voltage and saturated output power of the LEDs.  相似文献   

2.
Mg-doped InGaN/GaN p-type short-period superlattices (SPSLs) are developed for hole injection and contact layers of green light-emitting diodes (LEDs). V-defect-related pits, which are commonly found in an InGaN bulk layer, can be eliminated in an InGaN/GaN superlattice with thickness and average composition comparable to those of the bulk InGaN layer. Mg-doped InGaN/GaN SPSLs show significantly improved electrical properties with resistivity as low as ∼0.35 ohm-cm, which is lower than that of GaN:Mg and InGaN:Mg bulk layers grown under optimized growth conditions. Green LEDs employing Mg-doped InGaN/GaN SPSLs for hole injection and contact layers have significantly lower reverse leakage current, which is considered to be attributed to improved surface morphology. The peak electroluminescence intensity of LEDs with a SPSL is compared to that with InGaN:Mg bulk hole injection and contact layers.  相似文献   

3.
To understand formation and deterioration mechanisms of Ta/Ti ohmic contacts that were previously developed for p-GaN, the electrical properties of the Ta/Ti contacts, which were deposited on undoped GaN substrates and subsequently annealed in vacuum (where a slash (/) sign indicates the deposition sequence), were studied. The Ta/Ti contacts displayed good ohmic behavior after annealing at a temperature of 800°C for 10 min in vacuum, although the undoped GaN substrates were used. However, deterioration of the present ohmic contacts was observed during room-temperature storage. These contact properties were similar to those observed in the Ta/Ti contacts prepared on p-GaN. Hall-effect measurements revealed that thin n-type conductive layers were found to form on surfaces of both the undoped GaN and p-GaN substrates after annealing at 800°C in vacuum.  相似文献   

4.
We report the growth and characterization of unintentionally doped GaN on both exact and vicinal (0001) sapphire substrates. The GaN heteroepitaxial layers are grown by metalorganic chemical vapor deposition on c-plane A12O3 substrates either on-axis or intentionally misoriented 2° toward the a-plane (1120) or 5 or 9° toward the m-plane (10 10). The samples are characterized by 300K photoluminescence, cathodoluminescence, and Hall-effect measurements as well as by triple-axis x-ray diffractometry to determine the effect of the misorientation on the optical, electrical, and structural properties of heteroepitaxial undoped GaN. Ten different sample sets are studied. The data reveal enhanced photo-luminescence properties, increased electron mobility, a reduced n-type background carrier concentration, and a somewhat degraded surface morphology and crystalline quality for the misoriented samples compared to the on-axis samples.  相似文献   

5.
We have compared the effects of Mg-doped GaN and In0.04Ga0.96N layers on the electrical and electroluminescence (EL) properties of the green light emitting diodes (LEDs). To investigate the effects of different p-layers on the LED performance, the diode active region structures were kept identical. For LEDs with p-InGaN layers, the p-In0.04Ga0.96N/GaN polarization-related EL peak was dominant at low current levels, while the multiple-quantum-well (MQW) peak became dominant at higher current levels, different from LEDs with p-GaN layers. Also, LEDs with p-InGaN exhibited slightly higher turn on voltages (V on ) and forward voltages (V f ) compared to LEDs with p-GaN layers. However, the MQW related EL intensity was much higher and diode series resistance lower for LEDs with p-InGaN layers compared with LEDs with p-GaN, showing possible improvements in output power for LEDs with p-InGaN layers. The diodes with p-GaN layers typically showed V f of ∼3.1 V at a drive current of 20 mA, with a series resistance of ∼24.7 Ω, while diodes with p-InGaN showed V f of ∼3.2 V, with a series resistance of ∼18.5 Ω, for device dimensions of 230 μm by 230 μm.  相似文献   

6.
利用金属有机物化学气相淀积(MOCVD)生长了InGaN/GaN多量子阱(MQW)蓝光发光二极管(LED),研究了不同Cp2Mg流量下生长的p-GaN盖层对器件电学特性的影响。结果表明,随着Cp2Mg流量的提高,漏电流升高,并且到达一临界点会迅速恶化;正向压降则先降低,后升高。进而研究相同生长条件下生长的p-GaN薄膜的电学特性、表面形貌及晶体质量,结果表明,生长p-GaN盖层时,Cp2Mg流量过低,盖层的空穴浓度低,电学特性不好;Cp2Mg流量过高,则会产生大量的缺陷,盖层晶体质量与表面形貌变差,使得空穴浓度降低,电学特性变差。因此,生长p-GaN盖层时,为使器件的正向压降与反向漏电流均达到要求,Cp2Mg流量应精确控制。  相似文献   

7.
The edge-emitting electroluminescence (FL) state of polarization of blue and green InGaN/GaN light-emitting diodes (LEDs) grown in EMCORE’s commercial reactors was studied and compared to theoretical evaluations. Blue (∼475 nm) LEDs exhibit strong EL polarization, up to a 3:1 distinction ratio. Green (∼530 nm) LEDs exhibit smaller ratios of about 1.5:1. Theoretical evaluations for similar InGaN/GaN superlattices predicted a 3:1 ratio between light polarized perpendicular (E⊥c) and light polarized parallel (E‖c) to the c axis. For the blue LEDs, a quantum well-like behavior is suggested because the E⊥c mode dominates the E‖c mode 3:1. In contrast, for the green LEDs, a mixed quantum well (QW)-quantum dot (QD) behavior is proposed, as the ratio of E⊥c to E‖c modes drops to 1.5:1. The EL polarization fringes were also observed, and their occurrence may be attributed to a symmetric waveguide-like behavior of the InGaN/GaN LED structure. A large 40%/50% drop in the surface root mean square (RMS) from atomic force microscopy (AFM) scans on blue/green LEDs with and without EL fringes points out that better surfaces were achieved for the samples exhibiting fringing. At the same time, a 25%/10% increase in the blue/green LED photoluminescence (PL) intensity signal was found for samples displaying EL interference fringes, indicating superior material quality and improved LED structures.  相似文献   

8.
In this work, the effects of growth pressure and growth rate on electrical and structural properties of Mg-doped GaN were investigated. It has been shown that enhanced growth rates induced by higher growth pressures may lead to decreased structural and electrical properties of p-type GaN layers. If the growth rate is kept unchanged, higher growth pressures will be beneficial for the quality of Mg-doped GaN due to the enhanced NH3 overpressure.  相似文献   

9.
The advantages of In Ga N/Ga N light emitting diodes(LEDs) with p-Ga N grown under high pressures are studied.It is shown that the high growth pressure could lead to better electronic properties of p-Ga N layers due to the eliminated compensation effect.The contact resistivity of p-Ga N layers are decreased due to the reduced donor-like defects on the p-Ga N surface.The leakage current is also reduced,which may be induced by the better filling of V-defects with p-Ga N layers grown under high pressures.The LED efficiency thus could be enhanced with high pressure grown p-Ga N layers.  相似文献   

10.
P型氮化镓退火及发光二极管研究   总被引:1,自引:0,他引:1  
对金属有机物化学气相淀积(MOCVD)技术在蓝宝石衬底上生长的p型氮化镓(p-GaN)在氮气气氛下的热退火进行研究。用Hall测试系统测量不同温度、不同时间退火后样品的电学性能;对一组蓝光LEDs分别进行不同退火温度、退火时间实验,对退火前后量子阱峰值强度半高宽和积分面积变化进行了比较研究。实验表明p-GaN在825°C、8min条件下退火可以取得较高的空穴浓度,而LED在750°C、30min退火可以使量子阱的半高宽展宽较小,积分强度降低百分比小,而且LED芯片正向电压也较小。  相似文献   

11.
利用金属有机物化学气相淀积(MOCVD)生长了InGaN/GaN多量子阱(MQWs)结构,研究了生长停顿对InGaN/GaN MQWs特性的影响.结果表明,采用生长停顿,可以改善MQWs界面质量,提高MQWs的光致发光(PL)与电致发光(EL)强度;但生长停顿的时间过长,阱的厚度会变薄,界面质量变差,不仅In组分变低,富In的发光中心减少,而且会引入杂质,致使EL强度下降.  相似文献   

12.
The epitaxial growth of AlGaAs of LED quality by OM-VPE is achieved either by using high growth temperatures (≥780°C) or by using oxygen gettering methods and low growth temperatures (≤750°C). For 6% AlGaAs, the most studied composition in this work, graphite baffles and a molecular sieve, are used at low growth temperatures (≈680°C) to improve both the normalized PL intensity of epi layers and the EL efficiency of LEDs. Growth at high temperature, however, does not require oxygen gettering methods to achieve the same material quality. The improvement in both cases is achieved by reducing the concentration of the oxygen-related defect that is the source of the 0.8 eV peak, which limits the performance of 6% AlGaAs LEDs. AlxGa1−xAs alloys with x≥0.06 also show a similar behavior relative to the growth temperature. The defect peak itself remains invariant with x. This 0.8 eV PL peak is likely to be associated with Al, since the reaction between Al and oxygen is strong and the 0.8 eV peak is seldom observed in GaAs epi layers, regardless of the growth temperature.  相似文献   

13.
GaN layers have been grown by plasma-assisted molecular beam epitaxy on AlN-buffered Si(111) substrates. An initial Al coverage of the Si substrate of aproximately 3 nm lead to the best AlN layers in terms of x-ray diffraction data, with values of full-width at half-maximum down to 10 arcmin. A (2×2) surface reconstruction of the AlN layer can be observed when growing under stoichiometry conditions and for substrate temperatures up to 850°C. Atomic force microscopy reveals that an optimal roughness of 4.6 nm is obtained for AlN layers grown at 850°C. Optimization in the subsequent growth of the GaN determined that a reduced growth rate at the beginning of the growth favors the coalescence of the grains on the surface and improves the optical quality of the film. Following this procedure, an optimum x-ray full-width at half-maximum value of 8.5 arcmin for the GaN layer was obtained. Si-doped GaN layers were grown with doping concentrations up to 1.7×1019 cm−3 and mobilities approximately 100 cm2/V s. Secondary ion mass spectroscopy measurements of Be-doped GaN films indicate that Be is incorporated in the film covering more than two orders of magnitude by increasing the Be-cell temperature. Optical activation energy of Be acceptors between 90 and 100 meV was derived from photoluminescence experiments.  相似文献   

14.
The position‐controlled growth and structural and optical characteristics of ZnO nanotubes and their coaxial heterostructures are reported. To control both the shape and position of ZnO nanotubes, hole‐patterned SiO2 growth‐mask layers on Si(111) substrates with GaN/AlN intermediate layers using conventional lithography are prepared. ZnO nanotubes are grown only on the hole patterns at 600 °C by catalyst‐free metal–organic vapor‐phase epitaxy. Furthermore, the position‐controlled nanotube growth method allows the fabrication of artificial arrays of ZnO‐based coaxial nanotube single‐quantum‐well structures (SQWs) on Si substrates. In situ heteroepitaxial growth of ZnO and Zn0.8Mg0.2O layers along the circumference of the ZnO nanotube enable an artificial formation of quantum‐well arrays in a designed fashion. The structural and optical characteristics of the ZnO nanotubes and SQW arrays are also investigated using synchrotron radiation X‐ray diffractometry and photoluminescence and cathodoluminescence spectroscopy.  相似文献   

15.
GaN films have been grown at 1050 °C on porous silicon (PS) substrates by metalorganic vapour phase epitaxy. The annealing phase of PS has been studied in temperature range from 300 to 1000 °C during 10 min under a mixture of ammonia (NH3) and hydrogen (H2). The PS samples were characterized after annealing by scanning electronic microscope (SEM). We observed that the annealing under the GaN growth conditions does not affect the porous structure.For the growth of the active GaN layer we used a thin AlN layer in order to improve wetting between GaN and PS/Si substrate. The growth of AlN and GaN films was controlled by laser-reflectometry. We estimated the porosity of PS samples from the evolution of the reflectivity signal during the AlN growth. The crystalline quality and surface morphology of GaN films were determined by X-ray diffraction and SEM, respectively. Preferential growth of hexagonal GaN with (0002) direction is observed and is clearly improved when the thickness of AlN layer increases. Epitaxial GaN layers were characterized by photoluminescence.  相似文献   

16.
报道了n-ZnO/p-GaN异质结构发光二极管的制备及其发光特性.采用金属有机气相外延技术在Mg掺杂p型GaN衬底上外延n型ZnO薄膜以形成p-n结.实验发现在一定配比的HF酸和NH4Cl溶液中,腐蚀深度和腐蚀时间呈线性关系,并且二氧化硅和ZnO的腐蚀速率得到很好的控制,这对器件制备的可靠性非常重要.电流-电压(I-V)特性测试显示该器件结构具有明显的整流特性.室温下,在正反向偏压状态下都可用肉眼观察到电致发光现象.同时,通过与光致发光谱进行比较,对电致发光谱中发光峰的起源和发光机制进行了探讨.  相似文献   

17.
In this work, we have comparatively investigated the effects of the GaN, AlGaN, and AlN low-temperature buffer layers (BL) on the crystal quality of a-plane GaN thin films grown on r-plane sapphire substrates. Scanning electron microscopy images of the a-plane GaN epilayers show that using an AlGaN BL can significantly reduce the density of surface pits. The full-width at half-maximum values of the x-ray rocking curve (XRC) are 0.19°, 0.36°, and 0.48° for the films grown using Al0.15Ga0.85N, GaN, and AlN BLs, respectively, indicating that an AlGaN BL can effectively reduce the mosaicity of the films. Room-temperature photoluminescence shows that the AlGaN BL results in lower impurity incorporation in the subsequent a-plane GaN films, as compared with the case of GaN and AlN BLs. The higher crystal quality of a-plane GaN films produced by the Al0.15Ga0.85N BL could be due to improvement of BL quality by reducing the lattice mismatch between the BL and r-sapphire substrates, while still keeping the lattice mismatch between the BL and epitaxial a-plane GaN films relatively small.  相似文献   

18.
报道了n-ZnO/p-GaN异质结构发光二极管的制备及其发光特性.采用金属有机气相外延技术在Mg掺杂p型GaN衬底上外延n型ZnO薄膜以形成p-n结.实验发现在一定配比的HF酸和NH4Cl溶液中,腐蚀深度和腐蚀时间呈线性关系,并且二氧化硅和ZnO的腐蚀速率得到很好的控制,这对器件制备的可靠性非常重要.电流-电压(I-V)特性测试显示该器件结构具有明显的整流特性.室温下,在正反向偏压状态下都可用肉眼观察到电致发光现象.同时,通过与光致发光谱进行比较,对电致发光谱中发光峰的起源和发光机制进行了探讨.  相似文献   

19.
The influence of diluent gas on the metalorganic vapor phase epitaxy of AlN and GaN thin films has been investigated. A computational fluid dynamics model using the finite element method was employed to improve film uniformity and to analyze transport phenomena. The properties of AlN and GaN thin films grown on α(6H)-SiC(0001) substrates in H2 and N2 diluent gas environments were evaluated. Thin films of AlN grown in H2 and N2 had root mean square (rms) roughness values of 1.5 and 1.8 nm, respectively. The surface and defect microstructures of the GaN thin films, observed by scanning and transmission electron microscopy, respectively, were very similar for both diluents. Low temperature (12K) photoluminescence measurements of GaN films grown in N2 had peak intensities and full widths at half maximum equal to or better than those films grown in H2. A room temperature Hall mobility of 275 cm2/V·s was measured on 1 μm thick, Si-doped, n-type (1×1017 cm−3) GaN films grown in N2. Acceptor-type behavior of Mg-doped GaN films deposited in N2 was repeatably obtained without post-growth annealing, in contrast to similar films grown in H2. The GaN growth rates were ∼30% higher when H2 was used as the diluent. The measured differences in the growth rates of AlN and GaN films in H2 and N2 was attributed to the different transport properties of these mixtures, and agreed well with the computer model predictions. Nitrogen is shown to be a feasible alternative diluent to hydrogen for the growth of AlN and GaN thin films.  相似文献   

20.
Oxygen doped GaN has been grown by metalorganic chemical vapor deposition using N2O as oxygen dopant source. The layers were deposited on 2″ sapphire substrates from trimethylgallium and especially dried ammonia using nitrogen (N2) as carrier gas. Prior to the growth of the films, an AIN nucleation layer with a thickness of about 300? was grown using trimethylaluminum. The films were deposited at 1085°C at a growth rate of 1.0 μm/h and showed a specular, mirrorlike surface. Not intentionally doped layers have high resistivity (>20 kW/square). The gas phase concentration of the N2O was varied between 25 and 400 ppm with respect to the total gas volume. The doped layers were n-type with carrier concentrations in the range of 4×1016 cm−3 to 4×1018 cm−3 as measured by Hall effect. The observed carrier concentration increased with increasing N2O concentration. Low temperature photoluminescence experiments performed on the doped layers revealed besides free A and B exciton emission an exciton bound to a shallow donor. With increasing N2O concentration in the gas phase, the intensity of the donor bound exciton increased relative to that of the free excitons. These observations indicate that oxygen behaves as a shallow donor in GaN. This interpretation is supported by covalent radius and electronegativity arguments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号