首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The diverse biological actions of retinoic acid (RA) are mediated by retinoic acid receptors (RARalpha, beta and gamma) and retinoid X receptors (RXR alpha, beta, and gamma). Although the ligand-binding domains of RARs share the same novel folding pattern, many RAR subtype-specific retinoids have been synthesized indicating that the ligand-binding pocket of each RAR subtype has unique features. Previously we have demonstrated the importance for RA binding and RA-dependent transactivation of Arg276 of RARalpha alone and in RARbeta Arg269 in conjunction with Lys220. In this study, we have examined the role of the homologous amino acid residues (Lys229 and Arg278) in RARgamma for these activities. Like RARalpha but dissimilar to RARbeta, Arg278 in RARgamma alone was found to play an important role in RA binding and RA-dependent transactivation. Since Lys236 in RARgamma was suggested from the crystal structure of holo-RARgamma to interact with RA, we also examined its role and that of its homologs in RARalpha and RARbeta. Despite the suggestion from the crystal structure, neither Lys236 nor its homologs in RARalpha and RARbeta play a role in the binding of RA or RA-dependent transactivation. It is likely that Lys236 in RARgamma and its homologs in RARalpha and RARbeta are solvent exposed rather than pointing into the RA-binding pocket.  相似文献   

3.
Retinoids are promising agents for cancer chemoprevention and therapy. Nuclear retinoic acid receptors (RARs; RARalpha, -beta, and -gamma) and retinoid X receptors (RXRs; RXRalpha, -beta, and -gamma) are thought to mediate most of retinoids' effects on cell growth and differentiation. Because the majority of human non-small cell lung carcinoma (NSCLC) cell lines are resistant to all-trans-retinoic acid, we searched for more potent retinoids. Therefore, we examined the effects of 37 natural and synthetic retinoids that exhibit specific binding to and transactivation of individual RARs or RXRs on the proliferation of eight human NSCLC cell lines. All of these cells expressed mRNAs of the three RXRs; however, they expressed varying levels of RARalpha and RARgamma, and only three of the eight cell lines expressed RARbeta mRNA. Cellular retinoic acid-binding proteins (CRABPs) I and II were detected in one and three of the eight cell lines, respectively. Only 8 of the 37 retinoids exhibited growth-inhibitory activity (IC50, < 10 microM) against at least two of the eight NSCLC cell lines. The active retinoids included one (TD550) of five RARalpha-selective, one (Ch55) of three RARbeta-selective, three (CD437, CD2325, and SR11364) of six RARgamma-selective, and one (CD271) of four RARbeta/gamma-selective retinoids. The potency of these retinoids was low (IC50, > 1 microM), except for CD437, which was very potent (IC50, 0.1-0.5 microM). The six RXR-selective retinoids were mostly inactive even at 10 microM. However, combinations of RAR-selective and RXR-selective retinoids exhibited additive effects. There appeared to be no simple correlation among the histological type of the NSCLC (adeno- or squamous), the levels of nuclear receptors or CRABPs, and the response of the cells to the growth-inhibitory effects of retinoids. Nevertheless, in contrast with former studies with natural retinoids, these results suggest that several synthetic retinoids do exhibit inhibitory activity against NSCLC cells, and some of them may be useful clinically.  相似文献   

4.
Exogenous retinoic acid (RA) administered during mouse embryogenesis can alter the pattern of the axial skeleton during two developmental periods: an early window (7 to 8.5 days post-coitum; dpc) and a late window (9.5 to 11.5 dpc). Treatment during the early window results in vertebral homeotic transformations (predominantly posteriorizations) concomitant with rostral shifts in Hox gene expression, while treatment at the later window results in similar transformations without detectable alterations in Hox gene expression patterns. Mice null for retinoic acid receptor gamma (RAR gamma) exhibit axial defects, including homeosis of several vertebrae, therefore establishing a role for this receptor in normal axial specification RAR gamma null mutants are also completely resistant to RA-induced spina bifida, which occurs in wildtype embryos treated at 8.5-9.0 dpc, suggesting that this receptor specifically transduces at least a subset of the teratogenic effects of retinoids. To further investigate the role of RAR gamma in RA-induced defects during the early and late windows of retinoid-sensitive vertebral patterning, RAR gamma heterozygotes were intercrossed, pregnant females treated with vehicle or RA at 7.3, 10.5 or 11.5 dpc and full-term fetuses assessed for skeletal defects. Relative to wildtype littermates, RAR gamma null mutants treated at 7.3 dpc were markedly resistant to RA-induced embryolethality, craniofacial malformations, and neural tube defects. Furthermore, while RAR gamma null mutants were modestly resistant to certain vertebral malformations elicited by RA treatment at 7.3, they exhibited more pronounced resistance following treatment at 10.5 and 11.5 dpc. Moreover, several of the vertebral defects inherent to the RAR gamma null phenotype were abolished by RA treatment specifically at 10.5 dpc, suggesting that RAR alpha and/or RAR beta isoforms may substitute for certain RAR gamma functions, and that RAR gamma may elicit its normal effects on vertebral morphogenesis at this developmental stage.  相似文献   

5.
Retinoids are important regulators of cell growth and differentiation in vitro and in vivo and they exert their biologic activities by binding to nuclear retinoic acid receptors (RARs; alpha, beta, and gamma) and retinoid X receptors (RXRs; alpha, beta, and gamma). All-trans retinoic acid (RA) induces complete remission in patients with acute promyelocytic leukemia (APL) presumably by binding directly to RAR alpha of APL cells. Leukemic blasts from APL patients initially responsive to RA can become resistant to the agent. HL-60 myeloblasts cultured with RA have developed mutations of the ligand-binding region of RAR alpha and have become resistant to RA. Furthermore, insertion of an RAR alpha with an alteration in the ligand-binding region into normal murine bone marrow cells can result in growth factor-dependent immortalization of the early hematopoietic cells. To determine if alterations of the ligand binding domain of RAR alpha might be involved in several malignant hematologic disorders, the mutational status of this region (exons 7, 8, and 9) was examined in 118 samples that included a variety of cell lines and fresh cells from patients with myelodysplastic syndromes (MDS) and acute myeloid leukemias (AML), including 20 APL patients, 5 of whom were resistant to RA and 1 who was refractory to RA at diagnosis, using polymerase chain reaction-single-strand conformational polymorphism (PCR-SSCP) analysis and DNA sequencing. In addition, 7 of the 20 APLs were studied for alterations of the other coding exons of the gene (exons 2 through 6). No mutations of RAR alpha were detected. Although the sensitivity of PCR-SSCP analysis is less than 100%, these findings suggest that alterations of RAR alpha gene are rare and therefore other mechanisms must be involved in the onset of resistance to retinoids and in the lack of differentiation in disorders of the myeloid lineage.  相似文献   

6.
Retinoids and 1alpha,25-dihydroxyvitamin D3 (VD3) cooperatively induce the differentiation of myeloid leukemia cells. We investigated the role of retinoid receptors (RARs and RXRs) in the combined effects of retinoids and VD3 on growth inhibition and differentiation induction in human monoblastic leukemia U937 cells by using RAR- or RXR-selective retinoids. An isobologram analysis showed that both combinations were synergistic with regard to inhibiting the proliferation, and RAR agonists exhibited greater synergism with VD3 than did RXR agonists. RXR agonists alone induced nitroblue tetrazolium (NBT) reduction and expression of CD11b in U937 cells, whereas RAR agonists alone did not. On the other hand, RAR agonists and RXR agonists enhanced the differentiation induced by VD3, but RXR agonists required higher concentrations. An RAR antagonist inhibited the differentiation induced by RAR agonists plus VD3, but not that induced by RXR agonists plus VD3. Thus, RARs and RXRs act differently in their synergism with VD3. RAR agonists are more potent than RXR agonists with regard to synergism with VD3, and their combination may be useful in differentiation therapy against myeloid leukemia.  相似文献   

7.
8.
Retinoids (vitamin A and its metabolites) are suspected of regulating diverse aspects of growth, differentiation, and patterning during embryogenesis, but many questions remain about the identities and functions of the endogenous active retinoids involved. The pleiotropic effects of retinoids may be explained by the existence of complex signal transduction pathways involving diverse nuclear receptors of the retinoic acid receptor (RAR) and retinoid X receptor (RXR) families, and at least two types of cellular retinoic acid binding proteins (CRABP-I and -II). The different RARs, RXRs, and CRABPs have different expression patterns during vertebrate embryogenesis, suggesting that they each have particular functions. Another level at which fine tuning of retinoid action could occur is the metabolism of vitamin A to active metabolites, which may include all-trans-retinoic acid, all-trans-3,4-didehydroretinoic acid, 9-cis-retinoic acid, and 14-hydroxy-4,14-retroretinol. Formation of the metabolite all-trans-4-oxo-retinoic acid from retinoic acid was considered to be an inactivation pathway during growth and differentiation. We report here that, in contrast, 4-oxo-retinoic acid is a highly active metabolite which can modulate positional specification in early embryos. We also show that this retinoid binds avidly to and activates RAR beta, and that it is available in early embryos. The different activities of 4-oxo-retinoic acid and retinoic acid in modulating positional specification on the one hand, and growth and differentiation on the other, interest us in the possibility that specific retinoid ligands regulate different physiological processes in vivo.  相似文献   

9.
10.
The first step in retinoid action is binding to their nuclear receptors. Therefore, characterization of binding characteristics of retinoids is of major importance. Human retinoic acid receptors alpha (hRAR alpha), hRAR beta, and mouse RAR gamma (mRAR gamma) were expressed heterologously in Escherichia coli as a recombinant glutathione S-transferase (GST) fusion protein. The expressed fusion proteins were functional and bound specifically to the all-trans-retinoic acid (RA). The dissociation constants (Kd) for RA were 1.4 nM for GST-hRAR alpha, 1.4 nM for GST-hRAR beta, and 3.3 nM for GST-mRAR gamma, respectively. The fusion proteins were further used for competitive displacement assays to determine the displacement constant (DC50) for other selected retinoids. All-trans-RA and 4-oxo-all-trans-RA have high affinity with all three receptors (DC50 = 0.8-55 nM). The 13-cis RA binds to hRAR alpha with low affinity, but not to other RARs evaluated here. All-trans-N-ethylretinamide, all-trans-retinylacetate, and an ethyl ester of tetrahydronaphthalene derivative had no affinity to any RARs. The hRAR alpha and mRAR gamma receptors did not bind a naphthalene carboxylic acid derivative of RA, but hRAR beta binds this chemical with high affinity. Results indicated that the three recombinant proteins were functional in binding various RA congeners. The affinity and binding data of these retinoids were compared to their observed teratogenic activity.  相似文献   

11.
Retinoid signalling plays an important role in embryonic pattern formation. Excess of retinoic acid during gastrulation results in axial defects in vertebrate embryos, suggesting that retinoids are involved in early anteroposterior patterning. To study retinoid signalling in zebrafish embryos, we developed a novel method to detect endogenous retinoids in situ in embryos, using a fusion protein of the ligand inducible transactivation domain of a retinoic acid receptor and a heterologous DNA binding domain. Using this method, we show that retinoid signalling is localized in zebrafish embryos in the region of the embryonic shield, and towards the end of gastrulation in a posterior dorsal domain. To investigate the relationships between the spatial distribution of retinoid signalling and the regulation of retinoid target genes, we studied the downregulation by retinoic acid of two genes expressed in anterior regions of the embryo, goosecoid and otx1. These experiments show that expression of both genes is strongly downregulated in the anterior neurectoderm of zebrafish embryos treated with retinoic acid, whereas mesendodermal expression is only mildly affected. Interestingly, a significant downregulation of goosecoid expression by retinoic acid was observed only during midgastrulation but not in earlier stages. In agreement with these results, spatial expression of goosecoid and otx1 does not overlap with the region of retinoid signalling in the late gastrula. Our data support the hypothesis that a localized retinoid signal is involved in axial patterning during early development, at least in part through the repression of anterior genes in posterior regions of the embryo. Furthermore, our data suggest that the action of retinoids is spatially as well as temporally regulated in the developing embryo.  相似文献   

12.
The nuclear signaling pathways for retinoids and vitamin D differ in the specificity of the respective receptors for response elements. Two pathways for the action of both retinoic acid receptors (RARs) and vitamin D receptors (VDRs) have been identified, one being retinoid X receptor (RXR)-dependent and the other being RXR-independent. Moreover, RXRs were found to function as homodimers. In several steps we converted the retinoid specific response element of the human retinoic acid receptor beta promoter into the vitamin D/retinoic acid response element of the human osteocalcin promoter. We found that VDR homodimers only bind to the motif RGGTGA. The extended osteocalcin element also contains an imperfect direct repeat based on the motif RGGTGA spaced by three nucleotides, which is bound by RXR homodimers and activated by 9-cis-retinoic acid. The responsiveness of the osteocalcin element to all-trans-retinoic acid is mediated neither by RAR homodimers nor by RAR-RXR heterodimers. However, a VDR-RAR heterodimer binds to the osteocalcin response element and mediates activation by all-trans-retinoic acid. This heterodimer also binds to pure retinoid response elements, but it does not mediate activation by vitamin D alone. In combination with all-trans-retinoic acid, however, vitamin D enhances VDR-RAR heterodimer-mediated gene expression. This finding suggests a direct interaction between nuclear signaling by retinoic acid and vitamin D increasing the combinatorial possibilities for gene regulation by the nuclear receptors involved.  相似文献   

13.
The discovery and development of information surrounding the retinoic acid receptors (RAR and RXR) has ushered in a new era in understanding the molecular mechanism of action of vitamin A in embryonic development and cellular differentiation. The mechanisms involved in the regulation of gene expression by the retinoids is at least partially known and involves binding of the RAR and RXR to retinoic acid response elements. Additional factors, including coregulatory proteins, associated regulatory elements, and cell-specific factors, may also be involved in determining the specificity of retinoid-regulation of gene expression during development. During embryogenesis, retinoids are required for the development of the posterior hindbrain and its associated structures, as well as for the survival and differentiation of certain classes of neurons and neural crest cell derivatives. At least some of the effects of retinoid on hindbrain development are related to the regulation of Hox gene expression. Additional retinoid-regulated genes have been implicated in nervous system development, and the manner in which they lead to phenotypic changes during embryogenesis remains to be determined.  相似文献   

14.
The receptors for retinoic acid (RA) and for 1 alpha,25-dihydroxyvitamin D3 (VD), RAR, RXR, and VDR are ligand-inducible members of the nuclear receptor superfamily. These receptors mediate their regulatory effects by binding as dimeric complexes to response elements located in regulatory regions of hormone target genes. Sequence scanning of the tumor necrosis factor-alpha type 1 receptor (TNF alpha RI) gene identified a 3' enhancer region composed of two directly repeated hexameric core motifs spaced by 2 nucleotides (DR2). On this novel DR2-type sequence, but not on a DR5-type RA response element, VD was shown to act through its receptor, the vitamin D receptor (VDR), as a repressor of retinoid signalling. The repression appears to be mediated by competitive protein-protein interactions between VDR, RAR, RXR, and possibly their cofactors. This VDR-mediated transrepression of retinoid signaling suggests a novel mechanism for the complex regulatory interaction between retinoids and VD.  相似文献   

15.
The receptor for 9-cis-retinoic acid, retinoid X receptor (RXR), forms heterodimers with several nuclear receptors, including the receptor for all-trans-retinoic acid, RAR. Previous studies have shown that retinoic acid receptor can be activated in RAR/RXR heterodimers, whereas RXR is believed to be a silent co-factor. In this report we show that efficient growth arrest and differentiation of the human monocytic cell line U-937 require activation of both RAR and RXR. Also, we demonstrate that the allosteric inhibition of RXR is not obligatory and that RXR can be activated in the RAR/RXR heterodimer in the presence of RAR ligands. Remarkably, RXR inhibition by RAR can also be relieved by an RAR antagonist. Moreover, the dose response of RXR agonists differ between RXR homodimers and RAR/RXR heterodimers, indicating that these complexes are pharmacologically distinct. Finally, the AF2 activation domain of both subunits contribute to activation even if only one of the receptors is associated with ligand. Our data emphasize the importance of signaling through both subunits of a heterodimer in the physiological response to retinoids and show that the activity of RXR is dependent on both the identity and the ligand binding state of its partner.  相似文献   

16.
Retinoic acid (RA) and its natural and synthetic analogs, the retinoids, regulate many biological processes, including development, differentiation, cell growth, morphogenesis, metabolism and homeostasis. Retinoid effects are mediated by specific nuclear receptors, the RARs and RXRs. Because of their ability to control cell growth and induce differentiation, retinoids are being examined for the prevention and treatment of several cancers. The majority of retinoids so far analyzed and available inhibit primarily cell proliferation and tumor progression but cannot eliminate cancer cells. In addition, the beneficial effects of the natural retinoids are undermined by undesirable side effects, possibly due to indiscriminate activation of all retinoid receptor subtypes and response pathways. Here, we show that a synthetic retinoid, CD-271, that activates selectively the RAR gamma subtype in a given context, shows increased anti-proliferative activity against certain carcinoma cells over all-trans-retinoic acid (tRA). CD-271 exhibits enhanced activity against DU-145 prostate adenocarcinoma cells through apoptosis-inducing activity, while tRA does not. The selective anti-cancer cell action appears to be receptor-mediated as an RAR antagonist reverses the inhibition. This profile was not seen with other selective retinoids, such as RAR alpha-selective agonists, anti-AP-1 compounds and a non-apoptosis inducing RAR gamma agonist. Our data point to a specific role for RAR gamma in controlling the growth of the prostate, consistent with previous RAR gamma gene knockout data. The identified retinoid represents a new class of compounds with potential for the treatment of prostate cancer.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号