首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The oxidative dehydrogenation and cracking of ethane and propane over LiDyMg mixed oxides is reported. High yields of olefins and only moderate formation of carbon oxides was observed. Both are primary products that hardly interconvert under the reaction conditions used. Addition of chloride increases the rate of reaction, while slightly decreasing the selectivity to olefins. The addition of carbon dioxide strongly decreases the rate of reaction, the negative order of 0.5 indicating that two active Li+sites are blocked by the adsorption of one CO2molecule. The reaction proceeds at low oxygen pressure primarily via elimination of dihydrogen, while at higher oxygen partial pressure the hydrogen elimination occurs via water formation. It is speculated that dehydrogenation and cracking involve Li+and a rather nucleophilic oxygen site.  相似文献   

2.
自2016年Hermans课题组发现六方氮化硼(h-BN)在丙烷氧化脱氢制丙烯(ODHP)反应中优异的烯烃选择性,各类硼基材料引起了研究者强烈的研究兴趣并广泛地用于ODHP反应。与传统金属与金属氧化物基催化剂不同,非金属硼基催化体系能够有效抑制CO x 等过度氧化产物,提高烯烃产率,具有较广阔的工业应用前景。本综述对硼基丙烷氧化脱氢催化剂从催化剂的设计、合成策略和反应性能等方面进行了系统地讨论,阐明了催化剂的构效关系;总结了反应路线、关键中间体、决速步以及催化动力学行为,加深了硼基催化剂催化丙烷氧化脱氢活性位点和机理的理解。指出三配位B—O/B—OH活性位点的有效构建及实现表面与气相自由基反应的协同催化是提高硼基催化剂丙烷脱氢性能的关键。基于目前的研究现状和存在的问题,对硼基催化剂体系研发前景和未来工业化应用进行了展望。  相似文献   

3.
Sr-promoted rare earth (viz. La, Ce, Pr, Nd, Sm, Eu, Gd, Dy, Er and Yb) oxide catalysts (Sr/rare earth ratio = 0·1) are compared for their performance in the oxidative coupling of methane (OCM) to C2 hydrocarbons and oxidative dehydrogenation of ethane (ODE) to ethylene at different temperatures (700 and 800°C) and CH4 (or C2H6)/O2 ratios (4–8), at low contact time (space velocity = 102000 cm3 g−1 h−1). For the OCM process, the Sr–La2O3 catalyst shows the best performance. The Sr-promoted Nd2O3, Sm2O3, Eu2O3 and Er2O3 catalysts also show good methane conversion and selectivity for C2 hydrocarbons but the Sr–CeO2 and Sr–Dy2O3 catalysts show very poor performance. However, for the ODE process, the best performance is shown by the Sr–Nd2O3 catalyst. The other catalysts also show good ethane conversion and selectivity for ethylene; their performance is comparable at higher temperatures (≥800°C), but at lower temperature (700°C) the Sr–CeO2 and Sr–Pr6O11 catalysts show poor selectivity. © 1998 SCI.  相似文献   

4.
Catalytic activities of magnesium molybdates were investigated for the oxidative dehydrogenation of propane with and without molecular oxygen under atmospheric pressure. Catalytic properties drastically changed with the catalyst composition, and it turned out that Mg0.95MoOx catalysts having slight excess molybdenum showed the highest activity in the oxidative dehydrogenation of propane, which gave 61% selectivity to propene at 22% conversion of propane at 515°C. The catalytic activities strongly depended on the acidic properties of the catalysts. It was also revealed that the lattice oxide ions of the catalysts participated as an active oxygen in the oxidative dehydrogenation of propane.  相似文献   

5.
A series of perovskite catalysts have been tested for the oxidative dehydrogenation of ethane. The composition of these catalysts covered CaTi1–x Fe x O3–, with 0 x 0.4, SrTi1–x Fe x O3–, with 0 x 1.0, as well as mixtures of these. The latter catalysts containing more basic Sr metal showed higher selectivity to ethene than the former catalysts containing Ca. A few catalysts with Co on B-sites in the lattice were tested, but lost their stability above 923 K, resulting in a substantial change in the product selectivity. The perovskites gained activity when Fe was introduced in the lattice to form hypervalent ions (Fe4+) which are believed to play a role in the catalytic activity of these materials.  相似文献   

6.
The oxidative dehydrogenation of ethane has been investigated over Li-, Na- and K-doped La/CaO catalysts at temperatures of 550–650°C. The addition of alkali metals to La/CaO increases the ethylene selectivity. For Li- and Na-doped La/CaO catalysts, the ethane conversion remains almost unaltered. The increase of ethylene selectivity over the two catalysts is believed to be mainly caused by coordinative action of lithium and lanthanum or sodium and lanthanum. However, the Li-doped La/CaO catalyst exhibits stronger coordinative action than the Na-doped La/CaO catalyst. Catalyst characterization reveals that the strong coordinative action of components in Li/La/CaO is probably related to the chemical and crystal structure of the catalyst which is favorable for oxidative dehydrogenation of ethane. The results also show that addition of potassium, being a poor dopant, to La/CaO results in a sharp decrease in catalytic activity.  相似文献   

7.
Alkali‐metal doped sulfated zirconia catalysts were tested for the oxidative dehydrogenation of ethane into ethene. The effects of metal precursor compounds and acidic anion promoters on the catalytic activity in this reaction were studied. It was found that sulfation of zirconia increases the selectivity of ethane towards ethene. Lithium‐, sodium‐, and potassium‐doped sulfated zirconia catalysts showed quite different activities in this reaction. Sulfated zirconia doped with lithium catalysts were found to be effective for the oxidative dehydrogenation of ethane, giving over 90% selectivity to ethene and 25% ethene yield at 650 °C. © 1999 Society of Chemical Industry  相似文献   

8.
The oxidative dehydrogenations of ethane and propane were investigated over a series of zirconia and nickel‐oxide supported on zirconia catalysts. It was found that zirconia, sulfated zirconia as well as NiO‐based zirconia catalysts showed high catalytic activities for oxidative dehydrogenation of ethane and propane. However, conversion and selectivity differed depending on the nature of the catalysts. Zirconia, sulfated zirconia (SZ) and their supported NiO catalysts showed high ethane conversions but lesser selectivities to olefins while NiO/Li2ZrO3 exhibited high selectivities to ethylene and propylene. Addition of an LiCl promoter in the NiO/SZ catalyst increased the catalytic activity and olefin selectivity, thus resulting in a higher olefin yield. In the oxidative dehydrogenations of ethane and propane NiO–LiCl/SZ exhibited 79% ethylene selectivity at 93% ethane conversion at 650 °C and 52% selectivity to propylene at 20% propane conversion at 600 °C, respectively. Characterization showed that the physico‐chemical properties of the catalysts determine the catalytic activity and selectivity. © 2001 Society of Chemical Industry  相似文献   

9.
A series of catalysts were prepared by loading titanium dioxide with chromium and different amounts of phosphorus. Investigation in the oxidative dehydrogenation of ethane showed that chromium notably increases the activity of TiO2 principally toward the total oxidation of the hydrocarbon. Addition of phosphorus to the system simultaneously improved the global conversion and the ethylene selectivity. Moreover, a fairly good correlation between the catalysts acidity, the P/Cr ratios and the activity in the ODH reaction was established. It was also found that an excess of phosphorus, although it increases the acidity, decreases the conversion as if phosphorus effect was optimum for P/Cr ratios equal to 1.6. EPR and UV-visible characterizations of the samples before and after the catalytic tests showed that the improvement of the catalysts performances might be due to the isolated octahedral Cr3+ species that appear on the support. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
VAPO-5 and V/ ALPO-5 catalysts have been tested for the oxidative dehydrogenation of propane. Depending on the vanadium contents and the preparation procedure, different vanadium species and different catalytic behavior are observed. The catalyst containing V5+ species with a tetrahedral coordination presents the higher yield of propene in the oxidative dehydrogenation of propane. The same yields of CO2 are observed on all vanadium aluminophosphate catalysts, while the higher the yield of propene the lower the yield of CO is.  相似文献   

11.
Cr系丙烷脱氢催化剂研究进展   总被引:2,自引:1,他引:2  
综述了Cr系丙烷脱氢催化剂的研究状况,介绍了使用Cr系丙烷脱氢催化剂的工艺和催化剂脱氢机理,探讨了Cr系催化剂的活性中心和失活原因,总结了影响铬铝催化剂催化性能的因素,包括制备、载体、助剂、积炭及工艺条件,对Cr系催化剂的研究前景进行了展望。  相似文献   

12.
The gas-phase oxidative dehydrogenation (ODH) of cyclohexane to cyclohexene in the presence of molecular oxygen has been studied over various Mn-based catalysts. It is found that LiCl/MnOx/PC (Portland cement) catalyst exhibits the highest catalytic performance, and a 42.8% cyclohexane conversion, 58.8% cyclohexene selectivity and 25.2% cyclohexene yield can be achieved under 600 °C, 20,000 h−1 and C6H12/O2/N2=14/7/79. There are good correlations between the selectivities to cyclohexene and the electrical conductivities of Li doped Mn-based catalysts, from which it is deduced that the non-fully reduced oxygen species (O2, O22−, O) involved in a new phase of LiMn2O4 might be responsible for the high selectivity toward cyclohexene, whereas the Mn2O3 crystal phase results in the COx formation. The selectivity to cyclohexene increases with increasing molar ratio of Li to Mn in LiCl/MnOx/PC.  相似文献   

13.
Catalysts based on rare earth complexes such as CeO2/2CeF3, Sm2O3/4CeF3, Nd2O3/ 4CeF3 and Y2O3/4CeF3 were prepared. These catalysts were active for the oxidative dehydrogenation of propane with very high selectivity to propene. At 500°C and 6000 h–1, using CeO2/2CeF3 as the catalyst, the conversion of propane was 41.3%, selectivity to propene reached 81.1%, propene yield was 33.5%. XRD results indicated that F and O2– were exchanged in the lattices. Raman spectra showed that the O 2 might be the active oxygen species in propane oxidative dehydrogenation.  相似文献   

14.
采用浸渍法制备不同CeO_2负载量的xCeO_2/高岭土催化剂,采用XRD、N_2吸附-脱附、H_2-TPR和XPS等对催化剂物化性质进行表征。将xCeO_2/高岭土催化剂应用于丙烷氧化脱氢反应中,考察CeO_2负载量对丙烷氧化脱氢反应的影响,同时对催化剂进行原位电导测试。结果表明,CeO_2负载质量分数8%时,CeO2/高岭土催化剂的催化性能最好,500℃时,丙烷转化率为17.92%。在氧-丙烷-氧+丙烷连续变化的不同气氛下均显示了氧化还原可逆性。  相似文献   

15.
以Y分子筛为载体,采用浸渍法制备不同V含量的V/Y系列催化剂,并考察其丙烷氧化脱氢制丙烯的催化性能。通过BET、XRD、H_2-TPR和NH_3-TPD等技术对催化剂的物化性能进行表征。结果表明,Y分子筛具有大比表面积和窄孔径分布的特点,使负载的V能够形成高分散和孤立态V—O物种,负载的V物种堵塞了Y分子筛的小孔孔道,同时Y分子筛的弱酸性位有助于丙烷的吸附,对晶格氧活化丙烷起到了协同作用,负载V质量分数6%时,催化效果最好。  相似文献   

16.
铂基催化剂用于丙烷催化脱氢的主要缺点是稳定性差、选择性低,通过添加助剂可以大大改善该催化剂的脱氢性能.针对催化剂助剂,综述了铂基丙烷脱氢催化剂的研究现状,分别介绍了碱金属、碱土金属、稀土金属和过渡金属作为助剂对铂基催化剂的影响,探讨了所添加助剂的作用机制,并对铂基催化剂研究前景进行了展望.  相似文献   

17.
刘丹丹  姜月  范晓强  赵震 《工业催化》2018,26(11):61-66
随着对丙烯需求的日渐增加,由丙烷催化脱氢制丙烯来实现对丙烯的增产,已成为增产丙烯的重要手段之一。利用水热法制备一系列不同Sn掺杂量的Sn-MFI载体,采用等体积浸渍法制备相同Pt负载量的Pt/Sn-MFI催化剂,通过XRD、N2吸附-脱附、FT-IR和H2-TPR等表征考察不同Sn掺杂量的催化剂对丙烷催化脱氢性能的影响。结果表明,Pt/Sn1. 3%-MFI催化剂具有最高的催化丙烷脱氢活性和稳定性,丙烷初始转化率为43. 3%,丙烯选择性为98. 9%。反应360 min后,丙烷转化率为25. 1%,选择性保持不变。  相似文献   

18.
The dehydrogenation of propane was studied in gas-phase at 773 K over two series of silica-deposited Ir–Sn systems: the bimetallic catalysts obtained from Ir–Sn carbonyl clusters precursors and the ones prepared by deposition of a metallorganic Sn precursor onto preformed Ir nanoparticles. In the comparison, cluster-derived catalysts showed good propane conversion, optimal selectivity to propene and high stability under the severe reaction conditions.  相似文献   

19.
The oxidative dehydrogenation of ethane over sulfated-zirconia-supported lithium chloride catalysts has been systematically investigated. The optimal experimental parameters were obtained. It is found that sulfation of zirconia increases the catalytic activity. 2–3.5 wt% lithium chloride on sulfated zirconia catalysts exhibit high catalytic activity for oxidative dehydrogenation of ethane, with particularly high activity for ethene production. 70% selectivity to ethene at 98% ethane conversion, giving 68% ethene yield, is achieved over 3.5 wt% LiCl/SZ at 650°C.  相似文献   

20.
Oxidative dehydrogenation of isobutane over magnesium molybdate catalysts   总被引:1,自引:0,他引:1  
A series of Mo-Mg-O catalysts with different crystalline phases (pure and mixtures) have been studied in the oxidative dehydrogenation of isobutane. X-ray diffraction, UV–Vis spectroscopy and temperature programmed reduction were applied to characterise the samples. In addition, the kinetics of the lattice oxygen exchange with labelled C18O2 was measured for all samples. It has been found that the MgMoO4 phase contains the surface active sites suitable for the adsorption of isobutane and for its dehydrogenation to isobutene with the minimum of cracking reaction. Moreover, for this reaction the migration of lattice oxygen ions is not a key parameter in the control of the catalytic properties of these materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号