首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 265 毫秒
1.
以球状钛乙醇酸盐为TiO2前驱体,葡萄糖作碳源,通过水热法制得φ(300~400)nm的TiO2/C复合纳米微球.葡萄糖的浓度对产物的形貌、结构、碳含量有重要影响,进而影响产物的电化学性能.当碳含量为7wt%时,TiO2/C纳米复合材料的晶粒大小、BET比表面积、平均孔径分别为7.1 nm、157 m2/g和5.2 nm;该材料用作锂离子电池负极材料时,在0.2C的电流密度下循环80次后的嵌锂容量为160 mAh/g,并且具有较好的倍率性能.  相似文献   

2.
采用二步固相法制备了LiFePO4/Al/C复合正极材料.利用X射线衍射仪、扫描电镜和透射电镜表征样品的晶体结构、形貌、粒径和包覆状态,并研究了铝粉加入量对复合材料电化学性能的影响.结果表明,金属Al与LiFePO4发生了界面反应,生成多种副产物,并在LiFePO4的表面形成钝化膜.在LiFePO4颗粒的表面包覆有不规则形状的金属铝和1~2 nm的碳层.当铝粉加入量为3wt%时,LiFePO4/Al/C复合材料的电化学性能最佳,室温10C倍率下放电克容量为117.8 mAh/g;样品在20℃下,0.1C放电克容量为105.6 mAh/g,相对于常温的放电容量比率为73.8%.  相似文献   

3.
以柠檬酸为碳源,采用机械液相球磨与高温固相烧结相结合制备了LiFePO4/C复合材料,考察了烧结温度、烧结时间、柠檬酸用量、球磨时间等工艺条件对LiFePO4/C材料性能的影响.采用XRD、SEM和恒电流充放电等手段对该材料进行结构表征和电化学性能测试.结果表明,合成LiFePO4/C复合正极材料的适宜工艺为,球磨时间10h,烧结温度600℃,烧结时间18h,柠檬酸用量10%,气体流量0.6L/min.在优化工艺条件下制备的LiFePO4/C复合正极材料首次放电容量可达到146.2mAh/g.  相似文献   

4.
以Fe(NO3)3·9H2O、H3PO4和稀氨水为原料,用控制结晶法制备FePO4·x H2O,研究了表面活性剂CTAB和PEG对FePO4·x H2O材料的影响。再以Li2CO3、蔗糖和高温烧结后的FePO4为原料用碳热还原法制备了纳米LiFePO4/C复合材料。用SEM、XRD、充放电测试、循环伏安测试等手段对该复合材料进行表征,研究其电化学性能。结果表明:添加表面活性剂制备的LiFePO4/C复合材料纳米颗粒呈球形且团聚减少,提高了材料的倍率性能和循环性能,其中添加CTAB制备的LiFePO4/C材料的颗粒最小、分散性较好,0.1C时的首次放电比容量为159.8 m Ah·g-1,10C倍率下比容量仍达到132.4 m Ah·g-1。  相似文献   

5.
采用两步高温固相合成法制备锂离子电池正极复合材料LiFePO4/C复合材料。经300℃预培烧及后续高温培烧原材料,高温焙烧温度分别为600℃、650℃、700℃时,均得到了纳米尺寸的LiFePO4/C复合材料。在高温焙烧温度为650℃时,X射线衍射(XRD)结果表明,所得到的LiFePO4/C样品无杂质产生、峰型完好且结晶良好;扫描电镜(SEM)测试结果表明,所得材料的纯度较高、颗粒较小,无团聚现象。电化学性能测试结果表明培烧温度为650℃时,材料具有最好的电化学性能,电池的充放电循环性能最好。  相似文献   

6.
用两种碳源制备高性能LiFePO4/C正极材料   总被引:6,自引:0,他引:6  
为了提高LiFePO4材料的电化学性能,以碳溶胶和葡萄糖两种物质为碳源、采用高温固相法制备了LiFePO4/C复合正极材料.通过XRD、TEM、恒电流充放电等方法研究了材料的结构与电化学性能.XRD结果表明,两种碳源的添加对LiFePO4的晶体结构没有影响.从TEM图上可观测到颗粒外部明显的碳包覆层.电化学性能测试表明,在同样倍率下,以两种碳源制备的LiFePO4/C材料放电比容量高于以单一碳源制备的LiFePO4/C,且表现出优良倍率性能和循环稳定性:在0.1C下的放电比容量达162mAh/g,1C下放电比容量为157mAh/g,循环20次后容量没有任何衰减.  相似文献   

7.
以LiOH、FeSO4和H3PO4为原料,采用水热法合成了结晶性良好的LiFePO4颗粒。在此基础上,以葡萄糖为碳源,掺入不同量的碳,形成LiFePO4/C复合材料。样品经过XRD、SEM、恒流充放电测试、EIS表征,结果表明,掺碳提高了LiFePO4的比容量、循环性能和锂离子的扩散动力学性能。电化学测试表明,LiFePO4/C放电比容量开始随着碳含量的增加而上升,随后降低。其中,3%碳含量的LiFePO4/C样品具有最佳的放电性能,0.1C倍率下达到145mAh/g,0.2C倍率下达到142mAh/g,50次循环后仅衰减0.7%。  相似文献   

8.
以Fe3+为铁源,采用控制结晶技术合成了纳米FePO4.xH2O,将FePO4.xH2O于500℃热处理4 h后得到纳米FePO4前驱体,然后通过碳热还原在不同温度下煅烧合成橄榄石结构的纳米LiFePO4/C样品.采用差热/热重、X射线衍射、扫描电镜、比表面测试、电化学性能测试等分析测试方法对纳米FePO4.xH2O、FePO4前驱体及不同煅烧温度下制得的纳米LiFePO4/C样品进行表征.研究结果表明,700℃烧结10 h合成LiFePO4/C样品的粒径在40~100 nm左右,比表面积为79.8 m2/g;700℃煅烧合成样品在电压2.5~4.2 V,倍率为0.1C、1C、5C、10C、15C时的放电比容量分别达到156.5、134.9、105.8、90.3和80.9 mAh/g,具有较好的倍率性能;样品还表现出较好的容量保持率.  相似文献   

9.
为了提高LiFePO4的倍率性能,用碳热还原法制备了Na+掺杂的LiFePO4/C复合正极材料,并用X射线衍射(XRD)、扫描电子显微镜(SEM)、红外光谱(FT-IR)、恒电流充放电技术、循环伏安(CV)和交流阻抗(EIS)研究了Na+掺杂对LiFePO4/C材料的结构、微观形貌和电化学性能的影响.结果表明,Na+掺杂的LiFePO4/C复合材料具有单一的橄榄石型晶体结构,不存在杂质衍射峰,Na+在Li位掺杂可提高材料的导电性能和Li+扩散速率,降低电极极化,能有效改善材料的循环性能和倍率性能.与LiFePO4/C相比,Li0.99Na0.01FePO4/C的0.5C、2C和5C放电比容量分别为147.6、126.4和105.1 mAh/g,并表现出良好的循环性能和倍率性能.  相似文献   

10.
F掺杂 LiFePO4/C的固相合成及电化学性能   总被引:1,自引:0,他引:1  
用廉价三价铁离子化合物为铁源,聚丙烯作还原剂和碳源,两步固相法合成F掺杂原位碳包覆LiFePO4正极材料.结果表明,合成产物具有完整的橄榄石型LiFePO4晶体结构,粉末形状近似球形,尺寸分布在50~200nm范围内,两步固相法更好地抑制了LiFePO4晶粒的长大.电化学测试结果表明,F掺杂提高了材料倍率放电性能,有效降低了材料电极的极化.在1C,2C,3C(C为150mA/g)充放电倍率下,LiFePO3.98F0.02/C的比容量分别为146mAh/g,137mAh/g,122mAh/g,1C循环55次后放电容量达到初始容量的99.3%.  相似文献   

11.
本文在溶胶凝胶法制备碳包覆LiFePO4/C锂离子电池正极材料的基础上,对溶胶进行机械球磨活化以进一步优化LiFePO4/C复合材料的结构和形貌,并通过原位引入Fe2P等方法,提高其高倍率性能。采用XRD、SEM、元素分析等材料结构测试分析方法和恒电流充放电及电化学阻抗谱电化学测试技术,对溶胶机械活化及不同溶胶溶剂对LiFePO4/C材料结构和电化学性能的影响进行了研究。研究结果表明,机械活化能有效减小LiFePO4/C颗粒的尺寸及改善其分散性,并能改变Fe2P相的含量。溶胶机械活化处理后的LiFePO4/C在不同倍率下的放电容量明显增加。相对于蒸馏水,乙醇作为溶胶溶剂获得的LiFePO4/C材料具有更好的倍率性能,其在1C和10C的容量分别达到136mAh/g和90mAh/g。  相似文献   

12.
本文以FeSO_4、H_3PO_4和LiOH为原料,采用超临界水热过程制备了亚微米级LiFePO_4颗粒.在此基础上,为了提升制备的LiFePO_4正极材料的物理和电化学性能,对其进行了后续煅烧碳包覆改性研究.同时,通过XRD、SEM、充放电测试、CV和EIS测试手段,对LiFePO_4正极材料改性前后的结构、形貌和电化学性能进行了表征.结果表明:后续固相煅烧碳包覆改性能够显著改善LiFePO_4的结晶性能,减小颗粒粒径,降低电荷传递阻抗,以及大幅度地提升放电容量和循环性能;以PVP为模板剂、蔗糖为碳源,700℃煅烧1 h得到的LiFePO_4/C颗粒粒径小、分布均一,室温0.2 C倍率的首圈放电比容量为153.1 mAh/g,1 C倍率充放电时,放电比容量可保持在144.2 mAh/g,1 C循环50次,容量保持率达到97.1%.  相似文献   

13.
采用化学氧化法, 以吡咯为单体、 三氯化铁为氧化剂、 苯磺酸钠为掺杂剂在磷酸铁锂颗粒表面进行原位聚合, 制备了聚吡咯/磷酸铁锂(PPy/LiFePO4)复合材料。用FTIR、 XRD和SEM对PPy/LiFePO4复合材料进行了结构与形貌表征。用电化学工作站和充放电测试系统对复合材料的电化学性能进行了表征。结果表明: PPy/LiFePO4复合材料作锂二次电池正极具有良好的充放电循环性能。当PPy质量分数为17%, 充放电电流为0.1 mA时, PPy/LiFePO4复合材料最高放电比容量达163 mAh·g-1, 50次循环之后放电比容量仍为初始时的94.9%; 与LiFePO4相比, 当PPy的含量适当时, PPy/LiFePO4复合正极材料的放电比容量会有明显提高。PPy的加入提高了LiFePO4的电子电导率, 从而提高了活性物质有效利用率, 因此PPy/LiFePO4复合材料的比容量和循环性能均得到了提升。  相似文献   

14.
利用不同的锂化合物Li2CO3、LiOH.H2O、LiNO3、LiF作为锂源,采用二步固相法合成了LiFePO4/C,研究了不同锂源对LiFePO4组织结构和电化学性能的影响。结果表明,在相同的合成工艺条件下,采用4种不同锂源合成的LiFePO4的电化学性能表现出明显差异。采用LiOH.H2O合成的LiFe-PO4的电化学性能最佳,0.1C下的放电比容量为161mAh/g,1C下的放电比容量达117mAh/g,且0.5C下循环容量无衰减。采用不同锂源合成的LiFePO4电化学性能差异的原因与LiFePO4的颗粒大小、粒径分布、团聚程度及是否存在杂相有直接关系。  相似文献   

15.
碳源对LiFePO_4/C正极材料性能的影响   总被引:1,自引:0,他引:1  
以FePO_4·2H_2O、Li_2CO_3和柠檬酸/酒石酸/抗坏血酸为原料,经机械球磨后在惰性气氛中高温煅烧合成LiFePO_4/C正极材料.研究了不同碳源对LiFePO_4结构、形貌及电化学性能的影响.重点考察了碳源为酒石酸时,不同合成温度对材料性能的影响.采用XRD、SEM以及电化学测试等手段对目标产物进行了结构表征和性能测试.结果表明,以酒石酸做碳源时,合成的正极材料物相单一,颗粒细小,粒度均匀,并且具有优良的电化学性能.在室温下以0.1C倍率充放电,首次放电比容量可达155mAh/g,1.0C首次放电比容量为120mAh/g,经过100次循环以后容量仍有109mAh/g.  相似文献   

16.
对LiFePO4/C复合前驱体,分别采用静态氮气气氛,动态氮气气氛及静态真空三种烧结方式进行碳热还原合成LiFePO4/C复合正极材料.采用XRD、SEM、CV和充放电循环测试等方法分析和表征材料的结构、形貌和电化学性能.结果表明,烧结方式对所得材料的结晶度、晶粒大小、碳含量、合成温度以及电化学性能均有显著影响.真空烧结所得材料结晶度高,而动态气氛烧结对材料颗粒细化及均匀化都有积极影响,同时也能有效促进锂离子扩散动力学.动态气氛烧结可将材料的烧结温度降低到500℃,且所得材料表现出优异的电化学性能.0.5C倍率下循环首次放电比容量达到163.4 mAh/g,50次循环后容量保持率为99.02%.  相似文献   

17.
以FeSO_4·7H_2O,LiOH·H_2O和H_3PO_4为原料,葡萄糖为改性剂,采用微波水热法合成具有正交晶系橄榄石结构的LiFePO_4/C复合材料。借助XRD,SEM,EDS和电化学性能测试等分析,研究葡萄糖对产物组成、结构、微观形貌和电化学性能的影响。结果表明:葡萄糖改性后,LiFePO_4结构中Fe,P和O原子间的结合增强,颗粒尺寸减小,表面有碳层包覆,电化学性能提高。LiFePO4/C在0.1C倍率下的首次放电比容量为125.6mAh/g;1.0C倍率下的首次放电比容量为106.2mAh/g,30次循环后的容量保持率为91.3%。  相似文献   

18.
以水溶性酚醛树脂为碳源, Li2CO3为锂源, 纳米FePO4前躯体为铁源和磷源, 以水为介质, 采用湿法研磨混合均匀, 然后通过高温固相法制备出纳米磷酸亚铁锂/碳(LiFePO4/C)复合材料。采用XRD、SEM、TEM、TG和拉曼光谱对该复合材料进行了表征, 并研究了其电化学性能。结果表明, 制备的LiFePO4/C纳米颗粒为类球形, 表面均匀地包覆了一层约5 nm厚的碳层, 作为锂离子电池正极材料表现出良好的倍率性能和循环性能, 在0.2 C(1 C=170 mAh·g-1)、0.5 C、1 C、2 C、5 C、10 C下首次放电容量分别为151、150、146、142、132、119 mAh·g-1, 20 C下的首次放电容量也达105 mAh·g-1, 且循环50次几乎无衰减。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号