首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
通过聚苯胺包覆法制备LiFePO4/C,研究了苯胺用量对LiFePO4/C电化学性能的影响。采用X射线衍射(XRD)测试材料结构并用扫描电镜(SEM)和透射电镜(TEM),观察材料形貌及碳层包覆情况。结果表明:该方法制得的LiFePO4结晶度高并且具有规整的球状结构,粒径在50~80nm之间,碳层厚度约为2.5nm。经电化学性能测试发现:在相同合成工艺下,苯胺用量对合成的LiFePO4/C的电化学性能有很大影响.当苯胺加入量为0.5mL时所得LiFePO4/C(6mmol)的电化学性能最佳,0.2C下首次放电比容量可达161.6mAh·g-1,5C下放电比容量可达112.2mAh·g-1,且在5C下循环300次无明显衰减。  相似文献   

2.
通过FePO4的低温还原插锂合成了结晶良好、粒径分布均匀的正极材料LiFePO4纳米粉体.采用XRD、SEM对所得材料的物相结构和表面形貌进行了分析,并系统研究了烧结条件对材料物理和电化学性能的影响.结果表明,提高烧结温度和延长烧结时间都有利于提高产物的结晶度,但会使产物的颗粒长大.600℃下烧结2h所得的LiFePO4表现的电化学性能最佳,首次放电容量可达159mAh·g-1,50次充放电循环后容量几乎无衰减.  相似文献   

3.
采用碳热还原方法、以不同掺碳(葡萄糖为碳源)方式合成LiFePO4/C复合正极材料,利用X射线衍射仪、高倍率透射电镜以及电池测试仪等手段对样品进行了分析研究,并探讨了不同掺碳方式对复合LiFePO4/C正极材料性能的影响.结果表明,采用湿法加入葡萄糖制备的LiFePO4/C正极材料中LiFePO4的粒径范围在40~80nm左右,为纳米材料尺度,0.05C倍率下首次放电比容量达到160mAh/g,1C倍率下循环50次后,容量衰减仅为1.2%.  相似文献   

4.
以柠檬酸为碳源,采用机械液相球磨与高温固相烧结相结合制备了LiFePO4/C复合材料,考察了烧结温度、烧结时间、柠檬酸用量、球磨时间等工艺条件对LiFePO4/C材料性能的影响.采用XRD、SEM和恒电流充放电等手段对该材料进行结构表征和电化学性能测试.结果表明,合成LiFePO4/C复合正极材料的适宜工艺为,球磨时间10h,烧结温度600℃,烧结时间18h,柠檬酸用量10%,气体流量0.6L/min.在优化工艺条件下制备的LiFePO4/C复合正极材料首次放电容量可达到146.2mAh/g.  相似文献   

5.
用两种碳源制备高性能LiFePO4/C正极材料   总被引:6,自引:0,他引:6  
为了提高LiFePO4材料的电化学性能,以碳溶胶和葡萄糖两种物质为碳源、采用高温固相法制备了LiFePO4/C复合正极材料.通过XRD、TEM、恒电流充放电等方法研究了材料的结构与电化学性能.XRD结果表明,两种碳源的添加对LiFePO4的晶体结构没有影响.从TEM图上可观测到颗粒外部明显的碳包覆层.电化学性能测试表明,在同样倍率下,以两种碳源制备的LiFePO4/C材料放电比容量高于以单一碳源制备的LiFePO4/C,且表现出优良倍率性能和循环稳定性:在0.1C下的放电比容量达162mAh/g,1C下放电比容量为157mAh/g,循环20次后容量没有任何衰减.  相似文献   

6.
用碳热还原法制备LiFePO4/C复合正极材料   总被引:2,自引:0,他引:2  
以Fe2O3为铁源,以葡萄糖为碳添加剂,利用碳热还原法成功地制备了LiFePO4/C复合材料.研究了不同焙烧温度对样品性能的影响.利用X射线衍射仪、扫描电镜和碳硫(质量分数)分析方法对所得样品的晶体结构、表面形貌、含碳量进行分析研究.研究结果表明,样品中碳含量(质量分数)为10%的LiFePO4/C复合材料为单一的橄榄石型晶体结构, 碳的加入使LiFePO4 颗粒粒径减小.碳分散于晶体颗粒之间,增强了颗粒之间的导电性.电化学性能测试结果表明,LiFePO4/C充放电性能和循环性能都得到显著改善.其中,碳含量为10%在700℃下焙烧8h合成出的样品电化学性能最佳,在0.1、0.5和1C倍率下放电,LiFePO4/C首次放电比容量达159.3、137.0、130.6mAh/g,充放电循环30次,容量只衰减了2.2%、5.3%、7.6%.其表现出良好的循环性能.  相似文献   

7.
使用改进固相法,通过正交实验,考察了锂铁比、葡萄糖加入量,焙烧温度、焙烧时间四因素对LiFePO4正极材料电化学性能的影响.在优化LiFePO4合成条件下合成出具有优良电化学性能的LiFePO4/C正极材料,此方法避免使用球磨机,有利于工业化生产.使用XRD、SEM、循环伏安、交流阻抗对合成产物进行一系列性能分析,室温下0.1C倍率首次放电比容量139.6mAh/g,循环活化后容量上升并稳定至148mAh/g左右,30次循环后容量仍保持在147.4mAh/g.  相似文献   

8.
李杏恩  任丽  王芳芳  韩杨 《功能材料》2013,(19):2819-2824
以葡萄糖酸亚铁为碳源和部分铁源,采用固相法制备了LiFePO4/C复合正极材料。利用XRD和SEM对所得样品进行了结构与形貌表征。以LiFePO4/C作锂二次电池正极组装电池,用电化学工作站和充放电测试系统对样品进行电化学性能测试。当碳包覆量为4.75%,650℃烧结10h时所制备的LiFePO4/C复合材料在0.1、0.2和1C倍率下最高放电比容量分别为161.6、147.2和123.3mAh/g。1C倍率下经50次循环材料的放电比容量无衰减。实验结果表明,由于葡萄糖酸根和铁离子之间较强的化学键,阻止了葡萄糖酸根热解过程中在材料内部的不均匀扩散,其热解后在材料颗粒表面形成均匀导电碳层,并在颗粒之间形成丝状无定形碳,有效抑制了晶粒的生长,提高了活性物质利用率,形成了完整的导电网络,增强了材料的综合电化学性能。  相似文献   

9.
以硝酸铁、磷酸锂为原料,聚乙烯醇(PVA)为碳源和还原剂,采用半固相碳热还原法一步合成LiFePO4/C,研究了煅烧时间、煅烧温度以及碳含量对材料性能的影响,利用XRD、SEM和恒流充放电等手段研究各个样品的晶型结构、粒度形貌及其电化学性能的影响,结果表明:聚乙烯醇过量5%,在烧结温度700℃下维持7h可以得到性能最佳样品,0.1C倍率时放电首次比容量达到152.9mAh.g-1,0.5C倍率放电容量可达138.6mAh.g-1,循环40次后容量维持率97%,具有良好的循环稳定性。  相似文献   

10.
李军  黄慧民  魏关锋  夏信德  李大光 《材料导报》2007,21(11):125-126,129
为提高LiFePO4的电化学性能,通过固相合成法制备了掺碳的LiFePO4正极材料,并用XRD、SEM、电化学工作站及充放电测试等对样品的性能进行了研究分析.结果表明,少量的碳掺杂并未改变LiFePO4的晶体结构但显著改善了其电化学性能,LiFePO4/C样品的粒度较小,粒径分布均匀,0.1C首次放电比容量为141.9mAh/g,循环50次后容量下降了11.2mAh/g,以1C倍率首次放电比容量为126.5mAh/g,循环50次后容量保持率为87.2%.  相似文献   

11.
邓凌峰  魏银烨 《材料导报》2011,25(24):54-57
以NH4H2PO4、锂盐和纯铁为主要原料,采用电化学法合成磷酸锂铁前驱体,再通过磷酸锂铁前驱体合成锂离子电池正极材料LiFePO4/C。通过X射线衍射(XRD)、扫描电镜(SEM)及充放电性能测试等方法对其晶体结构、微观形貌和电化学性能进行分析研究。结果表明,LiFePO4/C具有单一的橄榄石型晶体结构。其中在无水乙醇溶剂中合成的LiFePO4/C正极材料粒径细小且分布均匀,具有最好的电化学性能,在0.2C的放电电流下,首次放电比容量达到142.3mAh/g,充放电循环30次后放电比容量仍保持在141.2mAh/g。  相似文献   

12.
橄榄石型的LiFePO4材料是一种具有良好发展潜力的锂离子电池阴极材料。应用一种两步烧结的碳热还原方法制备出LiFePO4阴极材料,该法缩短了高温烧结阶段的时间,从而达到抑制晶粒长大的目的,并对LiFePO4进行原位碳包覆,制得LiFePO4/C复合阴极材料。对制得的材料进行0.1C恒电流充放电测试,首次放电容量为149.4mAh/g,首次放电效率可以达到93.5%。而用作对比的一步法烧结碳热还原样品在0.1C恒流充放电试验中首次容量只有99.1mAh/g,放电效率是81.4%,并对制备反应及充放电结果的机理进行了探讨。  相似文献   

13.
采用二步固相法制备了LiFePO4/Al/C复合正极材料.利用X射线衍射仪、扫描电镜和透射电镜表征样品的晶体结构、形貌、粒径和包覆状态,并研究了铝粉加入量对复合材料电化学性能的影响.结果表明,金属Al与LiFePO4发生了界面反应,生成多种副产物,并在LiFePO4的表面形成钝化膜.在LiFePO4颗粒的表面包覆有不规则形状的金属铝和1~2 nm的碳层.当铝粉加入量为3wt%时,LiFePO4/Al/C复合材料的电化学性能最佳,室温10C倍率下放电克容量为117.8 mAh/g;样品在20℃下,0.1C放电克容量为105.6 mAh/g,相对于常温的放电容量比率为73.8%.  相似文献   

14.
以FePO4·4H2O,LiOH·H2O,LiF和柠檬酸为原料,采用一步固相混合烧结法制得F掺杂LiFePO4/C材料,研究了烧结温度和F掺杂量对LiFePO4/C电化学性能的影响。XRD和SEM分析表明,所得样品均为橄榄石型LiFePO4,颗粒粒径在1~2μm。电化学测试表明,LiFePO3.97F0.03/C在0.1C下的初始放电容量为144.7mAh·g^-1,1C放电比容量为123mAh·g^-1且具有良好的循环性能。  相似文献   

15.
碳源对LiFePO_4/C正极材料性能的影响   总被引:1,自引:0,他引:1  
以FePO_4·2H_2O、Li_2CO_3和柠檬酸/酒石酸/抗坏血酸为原料,经机械球磨后在惰性气氛中高温煅烧合成LiFePO_4/C正极材料.研究了不同碳源对LiFePO_4结构、形貌及电化学性能的影响.重点考察了碳源为酒石酸时,不同合成温度对材料性能的影响.采用XRD、SEM以及电化学测试等手段对目标产物进行了结构表征和性能测试.结果表明,以酒石酸做碳源时,合成的正极材料物相单一,颗粒细小,粒度均匀,并且具有优良的电化学性能.在室温下以0.1C倍率充放电,首次放电比容量可达155mAh/g,1.0C首次放电比容量为120mAh/g,经过100次循环以后容量仍有109mAh/g.  相似文献   

16.
通过对氧化石墨烯(GO)进行微观调控处理得到少层GO。采用喷雾干燥再高温改性的方法制备LiFePO_4/石墨烯锂离子电池复合正极材料;GO还原后即可得到石墨烯,其优良的导电性可以提高LiFePO_4的电子传输能力。通过X射线衍射(XRD)、红外光谱(FTIR)、扫描电镜(SEM)、透射电镜(TEM)和电化学测试技术等方法对复合材料的结构、形貌及电化学性能进行表征。石墨烯的复合使材料颗粒间构建空间三维导电网络,提高了电解质/电极材料界面的电荷转移速率,改善了LiFePO_4的电化学性能。电化学测试结果表明,在0.1C时LiFePO_4的放电比容量为155mAh/g,LiFePO_4/石墨烯复合材料的放电比容量为164mAh/g;1C和2C倍率时,LiFePO_4/石墨烯复合材料的放电比容量分别为140,119mAh/g。  相似文献   

17.
本文以FeSO_4、H_3PO_4和LiOH为原料,采用超临界水热过程制备了亚微米级LiFePO_4颗粒.在此基础上,为了提升制备的LiFePO_4正极材料的物理和电化学性能,对其进行了后续煅烧碳包覆改性研究.同时,通过XRD、SEM、充放电测试、CV和EIS测试手段,对LiFePO_4正极材料改性前后的结构、形貌和电化学性能进行了表征.结果表明:后续固相煅烧碳包覆改性能够显著改善LiFePO_4的结晶性能,减小颗粒粒径,降低电荷传递阻抗,以及大幅度地提升放电容量和循环性能;以PVP为模板剂、蔗糖为碳源,700℃煅烧1 h得到的LiFePO_4/C颗粒粒径小、分布均一,室温0.2 C倍率的首圈放电比容量为153.1 mAh/g,1 C倍率充放电时,放电比容量可保持在144.2 mAh/g,1 C循环50次,容量保持率达到97.1%.  相似文献   

18.
以Fe3+为铁源,采用控制结晶技术合成了纳米FePO4.xH2O,将FePO4.xH2O于500℃热处理4 h后得到纳米FePO4前驱体,然后通过碳热还原在不同温度下煅烧合成橄榄石结构的纳米LiFePO4/C样品.采用差热/热重、X射线衍射、扫描电镜、比表面测试、电化学性能测试等分析测试方法对纳米FePO4.xH2O、FePO4前驱体及不同煅烧温度下制得的纳米LiFePO4/C样品进行表征.研究结果表明,700℃烧结10 h合成LiFePO4/C样品的粒径在40~100 nm左右,比表面积为79.8 m2/g;700℃煅烧合成样品在电压2.5~4.2 V,倍率为0.1C、1C、5C、10C、15C时的放电比容量分别达到156.5、134.9、105.8、90.3和80.9 mAh/g,具有较好的倍率性能;样品还表现出较好的容量保持率.  相似文献   

19.
为研究机械活化处理对原料形貌和终产物电化学性能的影响,通过机械化学活化辅助固相法,以碳酸锂(Li2CO3)、磷酸二氢铵(NH4H2PO4)和草酸亚铁(FeC2O4·2H2O)为原料,蔗糖为碳源,合成LiFePO4-C复合材料.利用X射线衍射、扫描电镜、LAND电池测试系统等对合成材料进行表征和电化学性能检测.结果表明,通过机械活化,原料达到微米级的均匀混合和充分接触,提高了反应活性,利于传质过程和高温固相反应,获得颗粒细小均匀、结晶良好的LiFePO4-C材料,放电比容量为146.93 mA·h/g(充放电倍率为0.2 C),40次循环后放电比容量为143.40 mA·h/g,容量保持率为97%.  相似文献   

20.
利用不同的锂化合物Li2CO3、LiOH.H2O、LiNO3、LiF作为锂源,采用二步固相法合成了LiFePO4/C,研究了不同锂源对LiFePO4组织结构和电化学性能的影响。结果表明,在相同的合成工艺条件下,采用4种不同锂源合成的LiFePO4的电化学性能表现出明显差异。采用LiOH.H2O合成的LiFe-PO4的电化学性能最佳,0.1C下的放电比容量为161mAh/g,1C下的放电比容量达117mAh/g,且0.5C下循环容量无衰减。采用不同锂源合成的LiFePO4电化学性能差异的原因与LiFePO4的颗粒大小、粒径分布、团聚程度及是否存在杂相有直接关系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号