首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 93 毫秒
1.
Cu_2ZnSnS_4(CZTS)薄膜由于其合适的禁带宽度、高的光吸收系数以及组分无毒、储量丰富等特性,被视为薄膜太阳能电池最佳的吸收层材料之一。磁控溅射是制备CZTS薄膜的主要方法之一,因为其制备过程相对简单且可以产业化,一直是太阳能电池领域的研究热点。从磁控溅射制备CZTS薄膜的3种路径出发,综述了近年来各种路径在制备CZTS薄膜方面的研究进展,比较了3种路径的优缺点,同时对磁控溅射制备CZTS薄膜的发展前景进行了展望。  相似文献   

2.
P型半导体Cu_2ZnSnS_4(CZTS)由于具有最佳的直接带隙(1.0~1.5eV)、高的光吸收系数(超过104 cm~(-1))以及丰富、无毒的元素组成,使其成为商业化低成本太阳能电池最有希望的候选材料之一。然而,材料本身的一些缺陷制约了CZTS薄膜太阳能电池效率的提高。为了提高CZTS薄膜太阳能电池的效率,研究者们使用其他阳离子部分取代Cu、Zn或Sn来改善CZTS的缺陷。从CZTS的3种不同取代位置出发,综述了近年来各种阳离子部分取代CZTS的研究进展,同时对阳离子部分取代CZTS材料的发展前景进行了展望。  相似文献   

3.
采用电化学沉积的方法在SnO2透明导电玻璃基底上沉积Cu2ZnSnS4(CZTS)薄膜,在氮气保护下对其进行进一步硫化,研究了溶液中不同Na2S2O3浓度对沉积薄膜性质的影响。运用X射线衍射、扫描电镜、紫外-可见光分光光度计和拉曼光谱等手段分别对薄膜进行表征。实验结果表明:随着浓度的增加,薄膜的结构和光学特性逐渐变好。当Na2S2O3的浓度为0.11 mol/L时,制得理想的具有类黝锡矿结构的CZTS薄膜,光学带隙1.51 eV。  相似文献   

4.
采用溶剂热法,以CuCl2·2H2O、Zn(Ac)2·2H2O、SnCl4·5H2O作金属源,硫脲作硫源,乙二醇作溶剂,在体系中加入不同表面活性剂PVP和CTAB,研究PVP、CTAB协同效应对制备CZTS颗粒的影响。通过XRD、SEM、UV-Vis方法检测分析CZTS颗粒的物相、结构、形貌以及光学性能。结果表明:所得CZTS颗粒均具有锌黄锡矿结构;当在体系中同时加入PVP、CTAB时,两者的协同效应使得颗粒形貌发生明显变化,光学带隙也发生相应变化;当体系中加入的表面活性剂PVP∶CTAB=3∶1时,合成的颗粒结晶性较好、颗粒形貌为单分散似花状微粒、光学带隙为1.48 eV,与太阳能电池所需的最佳带隙接近。最后,提出了相应的机理。  相似文献   

5.
为了进一步提高Cu2ZnSnS4的光催化制氢性能,首先通过水热法制备出Cu2ZnSnS4光催化材料,在此基础上加入Cd(CH3COO)2·2H2O和Na2S进行二次水热反应制备Cu2ZnSnS4-CdS复合材料。通过XRD、SEM、TEM、Raman及XPS等分析测试方法对Cu2ZnSnS4-CdS复合材料的物相结构、微观形貌和元素价态进行了表征。结果表明:成功制备了结晶性能较好的Cu2ZnSnS4-CdS复合材料。Cu2ZnSnS4-CdS复合材料是由球状和块状颗粒组成;Cu2ZnSnS4-CdS复合材料表面>95%的Cd和S原子(原子比为1:1)的存在说明块状颗粒Cu2ZnSnS4表面生长的球形颗粒为CdS;在氙灯下的光催化制氢性能表明,Cu2ZnSnS4-CdS复合材料的光催化制氢效果明显优于Cu2ZnSnS4和CdS,产氢效率为296.17 μmol(g·h)-1。   相似文献   

6.
王威  沈鸿烈  焦静  金佳乐 《功能材料》2015,(3):3028-3032
采用乙二醇作为溶剂,硫代乙酰胺作为硫源,通过微波液相合成法制备出颗粒大小均一的Cu2ZnSnS4(CZTS)纳米颗粒。采用XRD、Raman、EDS、TEM以及UV-Vis-Nir等表征手段对所制备的纳米颗粒的物相、元素比例、形貌以及光学性能进行了分析。测试结果表明,所制备的CZTS纳米颗粒为(112)择优取向的锌黄锡矿结构,纳米颗粒的平均尺寸约为3.4nm,其光学带隙为1.85eV,呈现出明显的量子尺寸效应导致的光学带隙蓝移现象。将CZTS纳米颗粒制成CZTS墨水并滴涂烘干形成了CZTS薄膜,其XRD和SEM结果表明,所制备的CZTS薄膜具有良好的结晶性,且表面较为致密。光照与暗态的I-V曲线测试表明,所制备薄膜具有明显的光电导效应。  相似文献   

7.
宁婕妤  李云白  刘邦武  夏洋  李超波 《功能材料》2013,44(14):2056-2058,2064
以透明导电玻璃ITO和铜片为工作电极,用0.1mol/L乙酸铜和0.02mol/L乙酸钠的混合溶液作为电解液,通过两电极电化学沉积方法制备了Cu2O薄膜。讨论了pH值和沉积电位对Cu2O薄膜的影响,利用X射线衍射仪(XRD)、场发射扫描电子显微镜(SEM)、X射线光电子能谱(XPS)对薄膜进行表征。结果表明,两电极电化学沉积法制备Cu2O薄膜最佳的pH值为5.7~5.9,沉积电位为1.1~1.3V。此外,分析了沉积电位对Cu2O薄膜形貌的影响。  相似文献   

8.
刘耀成  王公平  高金凤  徐键  方刚 《材料导报》2014,28(23):132-140,146
Cu2ZnSnS4(CZTS)具有高达104 cm-1的吸收系数,其约1.45eV的禁带宽度与太阳光谱非常匹配,且CZTS所含元素无毒、在地球上含量丰富、价格低廉,适用于辊对辊、丝网印刷等非真空的低成本制造方法,这使得CZTS太阳电池已成为最具产业化发展潜力的薄膜太阳电池之一,因而最近几年倍受关注。低成本的非真空制造方法大都采用CZTS纳米颗粒或其纳米墨水,因此高质量的CZTS纳米粉体的低成本、绿色制备成为CZTS太阳电池器件制造的重要部分。对CZTS纳米颗粒及其纳米墨水的制备方法进行了综述,分析和讨论各种CZTS粉体的制备方法工艺特点及其优缺点,并探讨其发展趋势。  相似文献   

9.
王黎周嶅  毕文跃 《功能材料》2004,35(Z1):3209-3212
以Sn(OEt)2为起始原料,采用水热晶化法合成了分散性良好的金红石结构的SnO2纳米颗粒.采用X射线衍射对其进行了表征,表明SnO2纳米颗粒的结晶性良好,颗粒尺寸小于10nm.将合成的SnO2纳米颗粒均匀分散到SbSnO2镀膜液中,经陈化后制成镀膜溶胶,以溶胶-凝胶浸渍镀膜工艺制备纳米颗粒掺杂SbSnO2薄膜.分别采用范德堡(Van Der Pauw)法、UV/VIS分光光度计和FTIR中红外分析仪测量并分析膜层的导电性能、光学性能及结构特征,研究了导电纳米颗粒添加对SbSnO2薄膜电性能、光学性能和结构的影响.  相似文献   

10.
Cu2ZnSnS4薄膜光电性能及其太阳电池的制备和研究   总被引:1,自引:0,他引:1  
江丰  沈鸿烈  金佳乐  王威 《功能材料》2012,43(15):2040-2044
采用硫化Zn/Sn/Cu金属多层膜的方法制备了太阳电池吸收层用的Cu2ZnSnS4(CZTS)薄膜。用X射线衍射仪、拉曼光谱仪、紫外-可见近红外分光光度计、扫描电镜、能谱仪及数字源表等对薄膜进行了一系列的表征。结果表明制备的CZTS薄膜没有杂相存在并具有标准拉曼峰。薄膜在可见光范围内的吸收系数>104cm-1,同时其光学带隙接近1.5eV。CZTS薄膜具有均匀致密的表面形貌,薄膜元素比例非常接近标准化学计量比。此外,CZTS薄膜呈现显著的光电流响应性能,其光电流的激发和衰减时间分别为0.0736和0.2646s。  相似文献   

11.
Cu2ZnSnS4(CZTS)薄膜太阳能电池具有低成本、高效率、安全无毒等优点,是最具发展前景的太阳能电池之一,近几年来开始受到广泛关注。简要介绍了国内外几种制备Cu2ZnSnS4薄膜的方法,包括蒸发法、溅射法、脉冲激光沉积法、电化学沉积法、喷涂热解法、Sol-gel法、丝网印刷法,并阐述了这几种方法的优点及存在的问题,展望了今后CZTS薄膜的研究方向,认为通过溶剂热或热注入法制备出CZTS纳米晶体后,再通过丝网印刷法或旋涂等法制成CZTS薄膜能降低生产成本,在电池的工业化生产中具有很广阔的应用前景。  相似文献   

12.
Chemical bath deposition and ion exchange were used to incorporate copper, zinc, tin and sulfur into a thin film precursor stack. The stack was then sulfurized to form the photovoltaic absorber material Cu2ZnSnS4 (CZTS). The morphology and elemental composition of the films at each process stage were analyzed by Auger electron spectroscopy and scanning electron microscopy, and the structural and optical properties of the sulfurized film were determined by a combination of X-ray diffraction, Raman scattering, and diffuse reflectance UV-Vis spectroscopy. Compositionally uniform microcrystalline CZTS with kesterite structure and a bandgap of 1.45 eV were observed. A preliminary solar cell device was produced exhibiting photovoltaic and rectifying behavior.  相似文献   

13.
Stacked precursors of Cu, Sn, and Zn were fabricated on glass/Mo substrates by electron beam evaporation. Six kinds of precursors with different stacking sequences were prepared by sequential evaporation of Cu, Sn, and Zn with substrate heating. The precursors were sulfurized at temperatures of 560 °C for 2 h in an atmosphere of N2 + sulfur vapor to fabricate Cu2ZnSnS4 (CZTS) thin films for solar cells. The sulfurized films exhibited X-ray diffraction peaks attributable to CZTS. Solar cells using CZTS thin films prepared from six kinds of precursors were fabricated. As a result, the solar cell using a CZTS thin film produced by sulfurization of the Mo/Zn/Cu/Sn precursor exhibited an open-circuit voltage of 478 mV, a short-circuit current of 9.78 mA/cm2, a fill factor of 0.38, and a conversion efficiency of 1.79%.  相似文献   

14.
高金凤  李明慧  徐键  方刚 《材料导报》2017,31(17):146-151, 157
原料丰富价廉的铜锌锡硫(Cu2ZnSnS4,CZTS)材料与非真空、低成本绿色溶胶-凝胶法相结合在产业化制造高性价比CZTS薄膜太阳能电池方面的应用引人关注。为了了解未来发展方向,综述了溶胶-凝胶法制备CZTS薄膜与器件的研究进展,讨论了不同溶胶-凝胶工艺途径、不同溶剂、硫化等对CZTS薄膜制备与器件特性的影响,分析了Na掺杂及硫化退火对CZTS薄膜的作用,并结合绿色制造的要求探讨了其发展趋势。  相似文献   

15.
为了验证磁控溅射硫化物靶替代单质靶制备Cu2ZnSnS4(CZTS)薄膜及太阳电池的可行性与优越性, 采用多周期磁控溅射ZnS-Sn-CuS和Zn-Sn-Cu制备CZTS薄膜, 并分析了使用不同溅射靶材对薄膜晶体结构、相纯度、表面粗糙度、化学组分、表面、截面形貌及光电特性的影响。按SLG/Mo/CZTS/CdS/i-ZnO/ZnO:Al/Ni-Al结构制成完整的电池器件并测量了J-V曲线。结果显示采用ZnS-Sn-CuS靶制备的CZTS薄膜太阳电池开路电压为611 mV, 短路电流密度为21.28 mA/cm 2, 光电转换效率达5.11%; 而以单质靶为基础制备的太阳电池开路电压为594 mV, 短路电流密度为18.56 mA/cm 2, 光电转换效率为4.13%。这归因于采用ZnS-Sn-CuS制备的CZTS薄膜相比于单质靶更加平整致密, 纵向生长更好。证明了采用硫化物靶制备CZTS薄膜及太阳电池相较于单质靶的优越性。  相似文献   

16.
Multi-stage evaporation is a well-established method for the controlled growth of chalcopyrite thin films. To apply this technique to the deposition of Cu2ZnSnS4 thin films we investigated two different stage sequences: (A) using Cu2SnS3 as precursor to react with Zn-S and (B) using ZnS as precursor to react with Cu-Sn-S. Both Cu2SnS3 and ZnS are structurally related to Cu2ZnSnS4. In case (A) the formation of copper tin sulphide in the first stage was realized by depositing Mo/SnSx/CuS (1 < x < 2) and subsequent annealing. In the second stage ZnS was evaporated in excess at different substrate temperatures. We assign a significant drop of ZnS incorporation at elevated temperatures to a decrease of ZnS surface adhesion, which indicates a self-limited process with solely reactive adsorption of ZnS at high temperatures. In case (B) firstly ZnS was deposited at a substrate temperature of 150 °C. In the second stage Cu, Sn and S were evaporated simultaneously at varying substrate temperatures. At temperatures above 400 °C we find a strong decrease of Sn-incorporation and also a Zn-loss in the layers. The re-evaporation of elemental Zn has to be assumed. XRD measurements after KCN-etch on the layers prepared at 380 °C show for both sample types clearly kesterite, though an additional share of ZnS and Cu2SnS3 can not be excluded. SEM micrographs reveal that films of sample type B are denser and have larger crystallites than for sample type A, where the porous morphology of the tin sulphide precursor is still observable. Solar cells of these absorbers reached conversion efficiencies of 1.1% and open circuit voltages of up to 500 mV.  相似文献   

17.
Growth and Raman scattering characterization of Cu2ZnSnS4 thin films   总被引:1,自引:0,他引:1  
In the present work we report the results of the growth, morphological and structural characterization of Cu2ZnSnS4 (CZTS) thin films prepared by sulfurization of DC magnetron sputtered Cu/Zn/Sn precursor layers. The adjustment of the thicknesses and the properties of the precursors were used to control the final composition of the films. Its properties were studied by SEM/EDS, XRD and Raman scattering. The influence of the sulfurization temperature on the morphology, composition and structure of the films has been studied. With the presented method we have been able to prepare CZTS thin films with the kesterite structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号