首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
低损耗离子交换玻璃基光波导制备与分析   总被引:2,自引:0,他引:2  
考虑到离子交换和离子扩散工艺的特殊要求, 设计并熔制了适合于离子交换工艺的硅酸盐玻璃材料SiO2-B2O3-Al2O3-R’O-R2O(R’=Ca, Mg; R=Na, K). 采用Ag+/Na+熔盐离子交换和电场辅助离子扩散工艺在这种玻璃材料基片上获得了掩埋式条形光波导. 光学显微镜和电子探针分析表明高折射率的Ag+扩散区位于玻璃基片表面以下约10μm处, 形成光波导的芯部. 光波导芯部尺寸约为8μm×8μm, 与单模光纤芯径尺寸相当, 保证了较低的光纤耦合损耗. 对光波导的测量结果得出:在波长为1.5μm处条形光波导的传输损耗约为0.1dB/cm, 与单模光纤的耦合损耗约为0.2~0.3dB. 条形光波导的传输损耗与材料本身的损耗接近, 表现出掩埋式光波导的低损耗特征. 分析表明, 经过进一步优化, 这种光波导制备技术可用于低损耗光波导器件的制作.  相似文献   

2.
利用电子束光刻技术,制备了带有氧化硅包层的SOI光波导结构,对其传输模态及损耗进行了详细的理论分析,并分别对波导的传输损耗和耦合损耗进行了测试.测试结果验证了单模传输模态时的传输损耗较低,在波导层上添加覆盖层可以将波导传输损耗降低至3.96dB/cm,利用光栅垂直耦合可以大大降低光纤-波导的耦合损耗,耦合效率可以达到32.7%.  相似文献   

3.
利用广角有限差分光束传播法(WA-BPM)对集成光学陀螺(10G)用掺锗的二氧化硅光波导环形谐振腔进行了优化设计,详细分析了谐振腔的主要性能参数精细度F与各种损耗及光强耦合系数的关系. 在优化设计基础上,在硅基底上利用等离子体增强型化学汽相沉积(PECVD)法与反应离子刻蚀(RIE)制作了掺锗的SiO2光波导环形谐振腔.经测试,在1 550 nm波长处,光波导传输损耗为0.02 dB/cm,环形谐振腔内总传输损耗仅为0.1 dB/circuit,可为今后集成光学陀螺的小型化和高灵敏度提供理论参考.  相似文献   

4.
光波导端面的表面质量会严重影响光波导器件的光耦合封装性能,耦合封装前必须对波导器件端面进行抛光处理.目前聚合物光波导端面主要依靠传统研磨盘进行抛光处理,该工艺工序复杂、抛光效率低已成为制约聚合物波导器件应用的瓶颈.基于聚合物光波导材料优良的加工特性,通过对比实验提出了聚合物光波导的磁流变端面抛光工艺.采用5μm、0.5μm和1μm粒径的氧化铈抛光粉分别配制研磨盘抛光液及磁流变抛光液对3 mm×3 mm聚合物光波导端面进行抛光实验,发现磁流变加工对聚合物光波导端面进行一次2 m in光栅扫描抛光就具有比传统研磨盘约3 h精、粗抛光较好的端面质量.经过白光干涉仪测量,磁流变抛光后光波导端面表面粗糙度的均方根值达到了2.6 nm,传统端面抛光端面粗糙度均方根值为128.7 nm.通过自动对准耦合平台测试,结果显示通过磁流变端面抛光的光波导的插入损耗由抛光前的32.7 dB降低到了17.8 dB.磁流变抛光方法可以对聚合物光波导端面进行快速、高性能的抛光,在光波导应用领域具有非常广阔的应用前景.  相似文献   

5.
平均配位数为2.45~2.50的Ge-As-Se硫系玻璃具有优异的红外透光性能、较高的三阶光学非线性和极低的光致折射率变化效应,是较理想的红外光学非线性材料。采用动态蒸馏技术制备了高纯GeAs-Se玻璃,采用棒管法拉制了芯包结构的光纤。光纤在2~8μm传输性能良好,背景损耗约1dB/m,杂质对应的峰值损耗约6dB/m。  相似文献   

6.
为了研究光纤与宽波导光栅的有效耦合,基于高斯光束与波导光栅的光耦合理论,以30μm宽波导光栅为研究对象,利用矩阵光学和高斯光束理论分析和设计了一种扩束光纤,并通过分析其耦合损耗,建立了扩束光纤与波导光栅耦合模型.优化所设计扩束光纤的结构参数后,得到束腰半径为10.8μm的输出光束.最后分析了扩束光纤的结构容差,并讨论了所设计扩束光纤的输出光束、单模光纤的输出光束以及束腰半径为16 μm的自由空间高斯光束各自在光栅表面的位置变化对光栅耦合效率的影响.可知扩束光纤输出的光束与单模光纤输出的光束相比具有较大的位置容差,与束腰半径为16 μm的自由空间高斯光束相比,光耦合效率基本相同.  相似文献   

7.
碳化硅内膜空芯传能光纤的研究   总被引:1,自引:1,他引:0  
为了改进空芯传能光纤对10.6μm处CO2激光的传输性能,研制了具有SiC内膜的新型空芯玻璃波导,利用SEM和FTIR等技术分析了反应条件对sic膜层结构、物相的影响,并测试了光纤的性能.结果表明:温度是影响SiC膜层的重要因素;制得的孔径为950μm,长为2.5m的SiC传能光纤理论损耗约为0.7dB/m,实际传输损耗为0.74dB/m;SiC的吸收蜂有蓝移现象.  相似文献   

8.
集成光学头用的波导光栅耦合器的制作与性能研究   总被引:1,自引:0,他引:1  
对集成光学头用的波导光栅器件的制作技术进行了研究。采用热氧化和离子束增强沉积方法分别在Si衬底上制备了SiO2层和玻璃波导层,制成了以Si为基底的光波导.采用PCVD法在该光波导上制备Si-N层,用全息干涉光刻法在Si-N层上制作了周期为1μm的等周期直线光栅,并用离子束刻蚀技术将该光栅转移到了Si-N层中。光栅的倾角约20~30°;一级衍射效率可达120%,具有明显的闪耀光栅特征。该光栅可用作导波光输入输出耦合器。  相似文献   

9.
采用Taylor-Ulitovsky方法制备了直径分别在6.3~28.0μm、20.2~28.0μm和14.0~35.2μm之间的玻璃包覆非晶态FeCuNbVSiB、FeBSiCMn和CoNiFeSiB微丝。通过X射线衍射、扫描电镜、振动样品磁强计分别测试了玻璃包覆微丝的组织结构、微观形貌和磁性,研究了不同成分玻璃包覆磁性合金微丝的玻璃包覆层厚度、合金芯直径对微丝磁性能的影响。结果表明了,玻璃包覆磁性合金微丝的磁性能的影响因素由大到小依次为:饱和磁致伸缩系数、微丝成分和微丝尺寸。轴向磁化时随着微丝直径及玻璃包覆层厚度的增大,3 种微丝的径向饱和场强度降低,FeCuNbVSiB和FeBSiCMn微丝的轴向矫顽力先分别由508 A/m和390 A/m降低到486 A/m和278 A/m后再升高到2570 A/m和342 A/m,CoNiFeSiB微丝的轴向矫顽力由171 A/m降低到63 A/m。  相似文献   

10.
以硅基光电集成回路为主线,综述了不同的硅基光波导材料的制备技术和硅基光波导的制作工艺及其对光传输损耗的影响。分析了硅基光波导与锗硅光探测器集成用两种不同的耦合方式,阐明了波导与探测器集成的机理及设计理论基础。归纳出硅基键合激光器的四种技术方案,指出其共同优点是克服材料异质外延引起的晶格失配和热膨胀非共容,对实现OEIC行之有效。  相似文献   

11.
Chon JC  Mickelson AR 《Applied optics》1994,33(30):6935-6941
Composite organic-polymer glass optical waveguides in which coupling to the nonlinear organic-polymer layers was achieved by excitement of the underlying ion-exchanged glass waveguide and coupling of the light to the organic-polymer layer were fabricated and measured. A picosecond pulsed color center laser (λ = 1.5 μm) was used to measure the third-order optical susceptibility χ((3))(-w; w, -w, w) in an organic-dye-polymer composite glass waveguide with a Mach-Zehnder interferometer. For a squaryliumdye-doped poly(methyl methacrylate)-styrene-acrylonitrile matrix polymer layer, a composite χ((3)) of roughly 90, in units of (χLiNbO)(3)((3)), was measured.  相似文献   

12.
The fabrication of embedded microchannels monolithically integrated with optical waveguides by plasma-enhanced chemical vapor deposition of doped silica glass is reported. Both waveguide ridges and template ridges for microchannel formation are patterned in a single photolithography step. The microchannels are formed within an overlay of borophosphosilicate glass (BPSG), which also serves as the top cladding layer of the silica waveguides. No top sealing of the channels is required. Surface accessible fluid input ports are formed in a BPSG layer, with no additional steps, by appropriate design of template layers. By tightly controlling the refractive index of the waveguide layer and the microchannel-forming layer, fully integrated structures facilitating optical coupling between solid waveguides and liquids segments in various geometries are demonstrated. Applications in liquid-filled photonic device elements for novel nonlinear optical devices and in optical sensors and on-chip spectroscopy are outlined.  相似文献   

13.
Silicon waveguide optical non-reciprocal devices based on the magneto-optical effect are reviewed. The non-reciprocal phase shift caused by the first-order magneto-optical effect is effective in realizing optical non-reciprocal devices in silicon waveguide platforms. In a silicon-on-insulator waveguide, the low refractive index of the buried oxide layer enhances the magneto-optical phase shift, which reduces the device footprints. A surface activated direct bonding technique was developed to integrate a magneto-optical garnet crystal on the silicon waveguides. A silicon waveguide optical isolator based on the magneto-optical phase shift was demonstrated with an optical isolation of 30 dB and insertion loss of 13 dB at a wavelength of 1548 nm. Furthermore, a four port optical circulator was demonstrated with maximum isolations of 15.3 and 9.3 dB in cross and bar ports, respectively, at a wavelength of 1531 nm.  相似文献   

14.
Zhou Y  Chin MK  Lai KS  Wong CC 《Applied optics》1997,36(21):5089-5090
Surface and buried planar waveguides have been fabricated in glass microscope slides with purely thermal potassium and sodium ion-exchange techniques. We measured propagation loss as low as 0.08 dB/cm in the partially buried waveguides using an improved two-prism coupling method. The method includes a plastic prism and involves applying heat to soften the base of the outcoupling plastic prism so that the prism is temporarily in extremely close contact with the waveguide surface.  相似文献   

15.
The realization of polymer optical waveguides that have a large core size and high refractive-index difference (LCHD) Δ transmission characteristics is presented. A fabrication procedure for the waveguide based on vertical dip coating and reactive ion etching has been studied. To achieve the lower propagation loss, this procedure includes two original techniques, i.e., the lamination of thick polymer films and sidewall flattening. With these techniques, Δ of 5.4% and a 80 μm × 83 μm core polymer waveguide with 1.4-dB/cm propagation loss were achieved at 680 nm. The LCHD polymer waveguides are useful for practical power-transmission devices.  相似文献   

16.
付明磊  费霞  刘玉玲  乐孜纯 《光电工程》2012,39(11):124-129
为了提高Triplexer Monitor的光信号采样性能和集成度,提出一种基于非对称锥形波导结构的波长不敏感耦合器.该耦合器采用SiO2-on-Si掩埋型光波导结构,位于中心部位的锥形波导构成耦合区,与之衔接的S型弯曲波导实现信号光的输入和输出.采用传输矩阵法分析了光监测端口输出的归一化的耦合光功率,分析时将耦合区的中心部位作为非对称矩形波导而外侧作为对称矩形波导.利用光束有限差分传播法(FDBPM)和MATLAB数值仿真得出:当耦合区中心非对称矩形波导宽度分别为5.50μrn和3.35 μm时,对于1 300 nm到1 600 nm的输入光波长范围,可实现光监测端口4%~8%的归一化耦合光功率.特别的,在1310nm、1490 nm和1550 nm输入光波条件下,耦合器在输出端的分光比分别为:92∶8、96∶4和93∶7,同时TE模和TM模的分光比变化保持在5%以内.所设计的波长不敏感耦合器具有体积小、可靠性高等优点,适合与PLC型的Triplexer实现单片集成.  相似文献   

17.
Athermal arrayed waveguide gratings (AWGs) in silicon-on-insulator (SOI) are experimentally demonstrated for the first time to our knowledge. By using narrowed arrayed waveguides, and then overlaying a polymer layer, the wavelength temperature dependence of the AWGs is successfully reduced to -1.5 pm/°C, which is more than 1 order of magnitude less than that of normal SOI AWGs. The athermal behavior of the AWGs is obtained with little degradation of their performance. For the central channel, the cross talk is less than -15 dB and the insertion loss is around 2.6 dB. Good characteristics can be maintained with temperatures up to 75 °C. The total size of the device is 350 μm × 250 μm.  相似文献   

18.
Wang CJ  Parviz BA  Lin LY 《Nanotechnology》2008,19(29):295201
We model and demonstrate the behavior of two-dimensional (2D) self-assembled quantum dot (QD) sub-diffraction waveguides. By pumping the gain-enabled semiconductor nanoparticles and introducing a signal light, energy coupling of stimulated photons from the QDs enables light transmission along the waveguide. Monte Carlo simulation with randomized inter-dot separation reveals that the optical gain necessary for unity transfer is 3.1 × 10(7)?m(-1) for a 2D (2?μm length by 500?nm width) array compared to 11.6 × 10(7)?m(-1) for a 1D (2?μm length) given 8?nm diameter quantum dots. The theoretical results are borne out in experiments on 2D arrays by measurement of negligible crosstalk component with as little as 200?nm waveguide separation and is indicative of near-field optical coupling behavior. The transmission loss for 500?nm wide structures is determined to be close to 3?dB/4?μm, whereas that for 100?nm width is 3?dB/2.3?μm. Accordingly, higher pump power and gain would be necessary on the narrower device to create similar throughput. Considering existing nanoscale propagation methods, which commonly use negative dielectric materials, our waveguide shows an improved loss characteristic with comparable or smaller dimensions. Thus, the application of QDs to nanophotonic waveguiding represents a promising path towards ultra-high density photonic integrated circuits.  相似文献   

19.
We demonstrate the application of swift and heavy ion implantation to generate optical waveguides in amorphous materials. Gallium lanthanum sulfide (GLS) and gallium lanthanum oxysulfide (GLSO) glass waveguides are fabricated using Ar implantation at 60 MeV and 2 × 1012 ions/cm2. A “well” region with increased refractive index (0.1% for GLS and 0.3% for GLSO) is formed near the surface of the glass based on the electronic energy deposition; a “barrier” layer with decreased refractive index is formed inside the glass due to the nuclear energy deposition. As a result, the waveguides exhibit a refractive index distribution of “well + barrier” type. It is supposed that the change in local structure order of the substrate causes the “well” formation. The propagation loss is 2.0 dB/cm for GLS and 2.2 dB/cm for the GLSO glass waveguide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号