共查询到19条相似文献,搜索用时 78 毫秒
1.
本文以纳米Si为原料,通过溶胶-凝胶法,采用不同的煅烧温度,合成了在Si颗粒表面包覆Li4Ti5O12的复合结构材料作为锂离子电池负极材料。结合采用XRD、SEM、TEM、HRTEM和EDS等材料结构分析方法和对合成材料的首次库仑效率、循环稳定性及CV曲线的测试分析,研究了凝胶煅烧温度对合成材料的结构和电化学性能的影响,探讨了Li4Ti5O12的引入对改善Si负极材料循环性能的作用。研究结果表明,在600-800℃的煅烧温度下,溶胶-凝胶过程的产物主要为Li4Ti5O12,产物中Si保持其初始的晶体结构和颗粒特征。提高煅烧温度至1000℃,产物中出现相当量的杂相,大大降低了材料的容量。Si/Li4Ti5O12材料的首次充放电容量随煅烧温度的升高呈现先升高后又下降的变化,并在700℃获得最大值。Li4Ti5O12的引入较明显地改善了Si负极材料的循环稳定性。 相似文献
2.
Li4Ti5O12是具有良好应用前景的锂离子电池负极材料之一.本研究以聚丙烯酰胺(PAM)为模板剂和碳源,采用改进的固相合成法制备锂离子电池负极材料Li4Ti4.95Al0.05O12和Li4Ti4.95Al0.05O12/C.利用X射线衍射仪、场发射扫描电镜等测试手段表征材料的物相结构和形貌.结果表明:Al掺杂未改变Li4Ti5O12的尖晶石结构,合成过程中PAM模板剂的引入能够有效调控材料微观形貌并降低颗粒团聚程度.采用恒流充放电和交流阻抗测试材料的电化学性能,Li4Ti4.95Al0.05O12/C复合材料的比容量和循环性能得到明显改善,0.2C倍率下首次充放电比容量分别达到159.2和160.8 mAh/g,5C倍率时仍有较好的循环性能. 相似文献
3.
4.
5.
通过溶胶填充模板法制备了Li4Ti5O12纳米线阵列,采用SEM、EDS、XRD对纳米线形貌和组成进行了表征.实验结果表明:以孔径为100nm阳极氧化铝模板(AAO),于-0.1MPa负压环境中填充0.8 mol/L Li4Ti5O12溶胶,80℃干燥,900℃空气气氛中焙烧20h,重复填充-干燥-焙烧四次,得到平均直径为70nm尖晶石结构的Li4Ti5O12纳米线阵列.其直径和长度分别由模板的孔径、厚度,溶胶浓度和填充次数控制,晶体结构取决于焙烧时间和温度.并在实验基础上,分析了纳米线形成机理. 相似文献
6.
7.
锂离子电池负极材料Li4-xMgxTi5O12的制备及性能研究 总被引:1,自引:0,他引:1
研究了锂离子负极材料掺镁尖晶石Li4-xMgxTi5O12(0≤x≤0.25)的合成、结构及电化学性能.XRD结构分析显示Mg2 进入晶格后可能占据正四面体(8a)和正八面体(16d)位置;掺镁后电导率有所提高,特别是Li3.75Mg0.25Ti5O12(x=0.25),其电化学反应阻抗显著降低,电导率提高了半个数量级;同时降低了面积比阻抗(ASI),改善了材料倍率性能. 相似文献
8.
采用高温固相反应法制备尖晶石相Li4Ti5O12负极材料.初步研究了反应温度和反应时间对Li4Ti5O12电化学性能的影响.XRD衍射未观测到TiO2残余存在;电化学测试显示,1.2~2.5V恒流充放电,其可逆容量达158.3mAh/g,首次库仑效率为95.2%;循环20周其容量衰减率仅为3.1%. 相似文献
9.
10.
为提高Li4Ti5O12的导电性和倍率性能,应用二步固相法制备了Nb掺杂的Li4Ti4.95Nb0.05O12负极材料,X射线衍射、扫描电镜、激光粒度分布仪、充放电测试、循环伏安和交流阻抗等测试结果表明,合成的样品具有单一的尖晶石结构和平稳的充放电平台,粒径分布均匀,Nb掺杂改性的Li4Ti5O12具有优良的电化学性能,0.1、0.5、1和10C首次放电比容量分别为174.1、159.7、147和123.3mAh/g。10C下,循环20次后容量保持为118.1mAh/g。 相似文献
11.
锂离子电池负极材料球形Li4Ti5O12的合成及性能研究 总被引:4,自引:0,他引:4
研究了一种制备锂离子电池负极材料Li4Ti5O12的新工艺.以TiCl4为原料,水解制备出Ti4 溶液,通过“外凝胶”法制备出球形前驱体,与Li2CO3按计量比混合均匀,再通过一定的热处理后制备了锂离子电池负极材料球形Li4Ti5O12.采用XRD、SEM及电化学性能测试等分析手段考察了不同热处理温度对产品性能的影响.结果发现,经过800℃热处理16h后得到的产品颗粒呈球形、流动性好、粒径分布均匀、结晶度好;产品具有较高的振实密度,达到1.8g/cm3;并且还表现出较好的电化学性能,在1-3V之间充放电,其首次放电比容量高达160.7mAh·g-1,经过20次充放电循环后,其放电比容量仍有150.2mAh·g-1.研究表明该方法是一种适合制备高密度高活性Li4Ti5O12材料的工艺方法. 相似文献
12.
13.
以3.98mol/L的四氯化钛为前驱体溶液,采用内凝胶法制备了具有尖晶石结构的球形钛酸锂(Li4Ti5O12)粉末。通过XRD、SEM及电化学性能测试等分析手段表明,合成的Li4Ti5O12材料均为纳米一次粒子(晶粒)组成的球形二次粒子(颗粒),且具有较大的比表面积。以这种流动性好、粒径分布均匀、结晶度好的球形钛酸锂为正极材料和Li片为负极材料组成的锂离子电池具有平稳的充放电电压平台和优异的循环性能。在1.0~2.5V充放电,其首次放电容量为173.8mAh/g,经30次充放电循环后,其放电比容量仍有170.2mAh/g。 相似文献
14.
电极活性材料Li4Ti5O12的制备及其主要影响因素 总被引:1,自引:0,他引:1
在正交试验的基础上考察了烧结温度及时间、锂源对固相合成Li4Ti5O12性能的影响.结果表明,烧结温度为最显著影响因素;恰当的温度与时间组合可以制备粒径小、结晶度好的产物,具有良好的电化学性能;硝酸锂为锂源制备的Li4Ti5O12具有较好的高倍率充放电能力.以LiNO3为锂源,空气气氛下800℃烧结12h,所得Li4Ti5O12在大电流密度下充放电性能良好,1C、2C、5C时的放电容量分别达到了151、140、115mAh·g^-1,且具有良好的可逆性. 相似文献
15.
高分散纳米晶Li_4Ti_5O_(12)电极材料的制备及电化学性能的研究 总被引:1,自引:0,他引:1
以月桂酸为分散剂,采用无水溶胶-凝胶法合成了高分散的Li4Ti5O12纳米晶.采用XRD、SEM、TG-DSC、激光粒度分析仪、交流阻抗以及恒流充放电测试,对材料的形貌、结构和电化学性能进行表征.结果表明,煅烧温度对Li4Ti5O12的结晶度、微观形貌及其电化学性能有显著的影响.800℃下热处理10h后的产物,颗粒尺寸细小均匀,约在120~275nm之间,显示出优异的电化学性能.在0.5和1C倍率下,首次放电比容量分别可达174.7和163.3mAh/g,经过50次放电循环后,放电容量循环性能优异.研究表明该高分散纳米颗粒的合成方法是适合制备高电化学性能的Li4Ti5O12材料的工艺方法. 相似文献
16.
尖晶石型 Li4Ti5O12电极材料的合成与电化学性能研究 总被引:4,自引:0,他引:4
分别采用三种方法合成了尖晶石型Li4Ti5O12电极材料.考察了不同的工艺条件对目标材料性能的影响.应用XRD、SEM、LSD、CV、AC impedance以及恒流充放电测试等手段对目标材料进行了结构表征和性能测试.结果表明,利用溶剂分散湿磨可以在较短的时间内得到纯相的Li4Ti5O12.葡萄糖的加入能够提高Li4Ti5O12导电性,使材料具有良好的嵌锂性能.在0.2C倍率下进行充放电测试,其可逆比容量超过160mAh·g-1,44次循环后,容量没有明显衰减.Li4Ti5O12/LiFePO4实验电池测试表明Li4Ti5O12是可选的锂离子负极材料. 相似文献
17.
以LiOH溶液和不同粒径的自制球形TiO2为反应物, 通过水热法快速地合成了尖晶石型结构的球形Li4Ti5O12, 并考察了材料合成的水热反应机理和电化学性能。TiO2在100℃、5 mol/L LiOH溶液中经水热反应20 h得到前驱体, 再经800℃热处理2 h便可得到粒径大小不同(0.5~1.5 µm)且分布均匀的球形尖晶石Li4Ti5O12材料。LiOH在水热反应条件下扩散到球形TiO2内部, 得到在分子水平混合均匀的Li-Ti-O中间体, 利于高温下生成纯相的尖晶石Li4Ti5O12。所得粒径大小不同的Li4Ti5O12材料均表现出稳定的电化学循环充放电性能, 其中, 粒径为0.5 µm 的Li4Ti5O12材料的电化学性能最好: 室温下, 以0.2 C的倍率进行充放电, 其可逆容量达到158 mAh/g, 70周后容量保持率高于99%; 同时还表现出优异的高温循环稳定性, 55℃下以0.2 C的倍率进行充放电, 50次循环后其可逆放电比容量仍能达到125 mAh/g。 相似文献
18.
球形纳米晶LiFePO4和Li4Ti5O12的制备及电池研究 总被引:3,自引:0,他引:3
分别通过"控制结晶"和"外凝胶"工艺合成了球形纳米晶LiFePO4/C和Li4Ti5O12/C材料.通过XRD、SEM、比表面及电化学性能测试等分析手段表明,合成的LiFePO4/C和Li4Ti5O12/C材料均为纳米一次粒子(晶粒)组成的球形二次粒子(颗粒),具有较大的比表面积,振实密度分别达到1.25和1.71g/cm3;1C倍率下的首次放电比容量分别达到144.0和144.2mAh/g,并表现出优良的循环性能.以LiFePO4/C和Li4Ti5O12/C为正负极材料组成的1.8V锂离子电池具有平稳的充放电电压平台和优异的循环性能. 相似文献