首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Diamond-like carbon (DLC) films reinforced with single-walled carbon nanotubes (SWCNTs) were fabricated by sputter-deposition of DLC onto a few monolayers of spray-coated SWCNTs on glass substrates. The thickness-averaged internal stress was reduced by 1.5 GPa by incorporation of SWCNTs into 10-nm-thick DLC films. Stress analysis indicates that the internal stress is reduced by 1.8 GPa at the SWCNT-DLC nanocomposite layer and decreases exponentially as a function of film thickness. Microscopy reveals significant cracking and delamination in 150-nm-thick DLC films, while the SWCNT-reinforced films remain essentially intact. The results demonstrate that SWCNTs in DLC films influence the early stage of DLC film growth and act as an effective stress-buffering layer near the boundary between the film and substrate.  相似文献   

2.
The selective adsorption of cation on single-walled carbon nanotubes (SWNTs) is systemically studied by using density functional theory calculations. It is found that the adsorption energy of cations on SWNTs depends on the concentration of cations and the diameter and the electronic structure of SWNTs. The binding strength of on each SWNT increases monotonically as the concentration of decreases, undergoing a change from endothermic to exothermic reaction. Generally speaking, the binding of on SWNTs becomes weaker as the diameter increases. In the medium-diameter region (9 < d < 11 Å), prefers to interact with metallic SWNTs (m-SWNTs) rather than semiconducting SWNTs (s-SWNTs) at the same concentration of . In the small-diameter region (d < 9 Å), the binding of is nearly independent of metallicity, but it is stronger than that of on the medium-diameter s-SWNTs. In the large-diameter region (d > 11 Å), the dependence of adsorption on the electronic structure is complicated, but the binding of is weaker than that on the medium-diameter s-SWNTs. Our results are in agreement with the experimental report that the small-diameter m- and s-SWNTs and the medium-diameter m-SWNTs are etched away by while the medium-diameter s-SWNTs and the large-diameter m- and s-SWNTs are intact.  相似文献   

3.
A nonlocal anisotropic elastic shell model is developed to study the effect of small scale on shell-like vibration of single-walled carbon nanotubes (SWCNTs) with arbitrary chirality. Anisotropic elastic shell model is reformulated using the nonlocal differential constitutive relations of Eringen. The equations of motion are derived and analytical solution for the vibration of anisotropic SWCNTs is presented by using the Flügge shell theory and complex method. The suggested model is justified by a good agreement between the results given by the present model and available data in literature. Furthermore, the model is used to elucidate the effect of small scale on the vibration of zigzag, armchair and chiral SWCNTs. Our results show that small scale is essential for vibration of SWCNTs when the axial wave-length is not extremely long. Moreover, the results show that local model substantially overestimates vibrational frequencies of almost all modes.  相似文献   

4.
Nuclease effects on the cell internalization of single-walled carbon nanotubes (SWNTs) functionalized with fluorescent-labeled DNA in serum containing cell growth media were examined. When Cy3-labeled DNA-functionalized SWNT conjugates (Cy3DNA-SWNTs) were incubated with HeLa cells in a fatal bovine serum (FBS) medium, a high fl uorescence intensity was obtained from the cells, indicative for the high level inclusion of Cy3DNA-SWNTs. However, the fluorescence intensity was remarkably reduced if Cy3DNA-SWNTs were incubated with cells in the FBS-free medium. Further systematic control experiments revealed that Cy3 dye molecules were released from Cy3DNA-SWNT conjugates by nuclease, and the free Cy3 dyes penetrate into HeLa cell with high efficiency. Although the actual amounts of SWNTs internalized in the cells were almost identical for both cells incubated in the FBS-present and FBS-absent media according to the Raman measurements, one should be cautious to determine the degree of SWNT internalization based on the fluorescence intensities especially when the coloring dye molecules were linked to oligonucleotides in nuclease containing media. Electronic Supplementary Material  Supplementary material is available for this article at and is accessible for authorized users. This article is published with open access at Springerlink.com  相似文献   

5.
6.
Composite materials between conjugated polymer; poly[2-methoxy-5-(2'-ethylhexyloxy)-1.4-phenylene vinylene] (MEHPPV), or ruthenium(II)-tris(2,2'-bipyridine) (Ru(bpy)32+)-poly(sodium 4-styrenesulfonate) (PSS) complex and single-walled carbon nanotubes (SWNTs) were fabricated using polymer wrapping method. Formation of SWNT/MEHPPV or SWNT/PSS/Ru(bpy)32+ composite was confirmed by absorption and fluorescence spectra, and AFM images. Electrode modified with SWNT/MEHPPV or SWNT/PSS/Ru(bpy)32+ composite was prepared by casting from DMF solution of SWNT/MEHPPV or aqueous solution of SWNT/PSS/Ru(bpy)32+. The electrode modified with SWNT/MEHPPV or SWNT/PSS/Ru(bpy)32+ composite showed photocurrent response due to photoexcitation of MEHPPV or Ru(bpy)32+. The photocurrents are ascribed to photoinduced electron-transfer reaction from excited state of MEHPPV or Ru(bpy)32+ to SWNT.  相似文献   

7.
采用沉淀方法制备了直径分布狭窄的均匀Fe3O4纳米颗粒.Fe3O4纳粒形体几近一致,平均粒径为10.33 nm±2.99 nm(平均粒径±标准偏差).在超声作用下将MgO纳米颗粒分散在一定量Fe3O4纳米颗粒的水溶液中获得MgO负载Fe3O4的纳米颗粒.以甲烷为碳源,Fe3O4/MgO为催化剂,经化学气相沉积,在Fe3O4纳粒上制得了大量直径近乎均匀的单壁碳纳米管(SWCNTs)束.TEM显示:SWCNTs的平均直径1.22rm.热重分析显示:样品在400℃~600℃温度区间失重量约19%.拉曼光谱显示:SWCNTs的ID/IG的强度比为0.03,表明采用Fe3O4/MgO催化剂可制得高石墨化程度的单壁碳纳米管.  相似文献   

8.
A simple nickel oxide catalyst has been developed in synthesizing single-walled carbon nanotubes (SWNTs) at moderate temperature. The catalyst used in the experiment was without a preceding reduction in hydrogen flow. The synthesis of SWNTs was performed at a temperature of 700 °C, which represents a moderate reaction temperature. The presence of SWNTs on the catalyst was confirmed by transmission electron microscope (TEM) and Raman spectroscope. The Raman spectrum shows a strong intensity at the radial breathing mode, indicating that the occurrence of SWNTs was dominant. Raman data further reveals that the synthesized SWNTs had the diameters in the range from 0.58 to 2.02 nm.  相似文献   

9.
流体排布法是实现碳纳米管定向排列的一种简单的方法。采用流体排布法在具有浸润性图案化的基底上成功地对单壁碳纳米管(SWNTs)束进行了水平方向上的排布。将SWNTs悬浮液滴入光刻胶制成的微通道中,在流体剪切力作用下,弯曲的SWNTs在一定程度上会被拉伸并且平行地排列在纳米级宽度的微通道中。将排列好的SWNTs阵列转移到一些不同间距的金电极对上面,制作成碳纳米管场效应晶体管(CNTFET)。CNTFET的电性能测试结果表明,制备的SWNTs束可以制造出不同电极间距同时具有良好电性能的CNTFET。  相似文献   

10.
In the present study, a nanoscale quasi-continuum constitutive model for predicting the thermal-mechanical properties of single-walled carbon nanotubes (SWCNTs) and graphene sheet is established based on the interatomic potential and the temperature-related higher order Cauchy-Born rule. Helmholtz free energy is used as the corresponding thermodynamic potential. It is a function of some temperature-dependent lattice parameters that can be determined through an energy minimization process. As an application of the proposed quasi-continuum model, temperature dependency and curvature effect of the specific heat, the coefficient of thermal expansion (CTE) and the Young’s modulus of SWCNTs are investigated systematically. Numerical results obtained show the effectiveness of the proposed constitutive model.  相似文献   

11.
Employing the variational differential quadrature (VDQ) method, the effects of initial thermal loading on the vibrational behavior of embedded single-walled carbon nanotubes (SWCNTs) based on the nonlocal shell model are studied. According to the first-order shear deformation theory and considering Eringen's nonlocal elasticity theory, the energy functionality of the system is presented and discretized using the VDQ method. The effects of thermal loading and elastic foundation are simultaneously taken into account. The use of the numerical discretization technique in the context of variational formulation reduces the order of differentiation in the governing equations and consequently improves the convergence rate. The accuracy of the present model is first checked by comparison with molecular dynamics simulation results and those of other methods. The effects of involved parameters are then investigated on the fundamental frequencies of thermally preloaded embedded SWCNTs. The results imply that the thermal loading has a significant effect on the vibration analysis of embedded SWCNTs.  相似文献   

12.
Combining objects with diverse properties has often the advantage of giving rise to novel functionalities. In this scenario, metal-filled and decorated carbon nanotubes (m-CNTs) represent a class of hybrid carbon-based nanostructured materials with enormous interest for application in several fields, ranging from nanoelectronics and spintronics to nanomedicine and magnetic data recording. The present review will provide the reader with an overview of state-of-the-art hybrid architectures based on m-CNT systems, methods currently employed for their fabrication, the set of their unique properties and how they can be applied toward novel devices with multifunctional properties for a broad range of applications.  相似文献   

13.
A temperature-related higher-order gradient continuum theory is proposed for predicting the mechanical properties of single-walled carbon nanotubes (SWCNTs) at various temperatures. It is found that the axial elastic moduli of zigzag (21, 0), armchair (12, 12) and chiral (15, 9) SWCNTs with similar radii approach 0.7 TPa when T = 0 K, but decline slightly on different slopes. These results indicate that the temperature effect influences the axial Young moduli of zigzag SWCNTs less than those of the other types. Moreover, the parameters λ1 and λ2 corresponding to the uniform longitudinal and circumferential stretches at different temperatures are also examined, and the results show that with an increasing temperature, all SWCNTs are stretched in the longitudinal direction, while in the circumferential direction, only the zigzag SWCNTs are stretched, whereas the others are compressed.  相似文献   

14.
Single-walled carbon nanotubes (SWCNTs) were prepared by a modified arc discharge furnace using 500?Torr helium as buffer gas at 600?°C. The effect of the catalyst type on the production of SWCNTs was studied by transmission electron microscopy, X-ray diffraction and Raman spectroscopy. The experimental results indicated that the catalyst composition plays an important role in the production rate and purity of the SWCNTs product. Fe-Ni-Mg and Co-Ni powder catalysts demonstrated excellent catalytic effect at a catalyst content of 3?wt%. The soot production rate was up to 15?g/hr and the mean diameter of SWCNTs was about 1.3?nm.  相似文献   

15.
We have developed a process for chemical purification of carbon nanotubes for solution-processable thin-film transistors (TFTs) having high mobility. Films of the purified carbon nanotubes fabricated by simple drop coating showed carrier mobilities as high as 164 cm2V−1s−1, normalized transconductances of 0.78 Sm−1, and on/off current ratios of 106. Such high performance requires the preparation of a suspension of micrometer-long and highly purified semiconducting single-walled carbon nanotubes (SWCNTs). Our purification process includes length and electronic-type selective trapping of SWCNTs using recycling gel filtration with a mixture of surfactants. The results provide an important milestone toward printed high-speed and large-area electronics with roll-to-roll and ink-jet device fabrication.   相似文献   

16.
载气种类对单壁碳纳米管管径的影响研究   总被引:3,自引:0,他引:3  
单壁碳纳米管的管径对其性能、特别是储氢性能有极其重要的影响,但至今未见制备过程中系统控制单壁碳纳米管管径的报道.本文分别以氦气、氮气和氩气为载气,采用催化裂解法制备了不同直径范围的单壁碳纳米管.HRTEM和Raman光谱分析表明,以氦气、氩气为载气制得的碳管直径分布范围相对较窄,平均直径分别约为1.6和5.0nm.以氮气为载气时碳管直径分布相对较宽,约为2.0~4.5nm.氮气与碳反应生成氮化碳可能是导致单壁碳纳米管直径分布相对较宽的主要原因.分别以氦气、氮气和氩气为载气制得的单壁碳纳米管,在273K,15MPa时质量储氢分数依次为4.21%、6.30%和8.05%.  相似文献   

17.
We present a systematic study of the effects of surfactants in the separation of single-walled carbon nanotubes (SWNTs) by density gradient ultracentrifugation (DGU). Through analysis of the buoyant densities, layer positions, and optical absorbance spectra of SWNT separation using the bile salt sodium deoxycholate (DOC) and the anionic salt sodium dodecyl sulfate (SDS), we clarify the roles and interactions of these two surfactants in yielding different DGU outcomes. The separation mechanism described here can also help in designing new DGU experiments by qualitatively predicting outcomes of different starting recipes, improving the efficacy of DGU and simplifying post-DGU fractionation.   相似文献   

18.
Polarized light microscopy (PLM) is used to image individual single-walled carbon nanotubes (SWNTs) suspended in air across a slit opening. The imaging contrast relies on the strong optical anisotropy typical of SWNTs. We combine PLM with a tunable light source to enable hyperspectral excitation spectroscopy and nanotube chirality assignment. Comparison with fluorescence microscopy and spectroscopy confirms the assignment made with PLM. This represents a versatile new approach to imaging SWNTs and related structures.   相似文献   

19.
We report on a one-step amide derivatization of two carbon nanomaterials (CNM) containing carboxylic functional groups, which are oxidized single-walled carbon nanotubes (SWNTs) and nanodiamond (ND), with amino-substituted crown ethers, namely, 4′-aminobenzo-15-crown-5 and 4′-aminobenzo-18-crown-6. The functionalization procedure proposed is based on thermal activation of COOH groups instead of traditional chemical activation, is fast and facile, does not require the use of organic solvents and can be considered as ecologically friendly. The nanohybrids of crown ethers with SWNTs and ND were characterized by means of Fourier-transform infrared and Raman spectroscopy, scanning and transmission electron microscopy, as well as thermogravimetric analysis and solubility tests in toluene and propanol. The approach proposed allows for a facile preparation of crown ether-functionalized SWNTs and ND without contamination with other chemical reagents, solvents and detergents, which might be especially important for a broad spectrum of applications ranging from nanoelectronics to nanomedicine.  相似文献   

20.
Single-walled carbon nanotubes (SWNTs) have been synthesized by catalytic decomposition of eucalyptus oil, on a high silica-zeolite support impregnated with Fe/Co catalyst at 850 °C by the spray pyrolysis method. Catalyst with 5 wt.% (molar ratio of Co:Fe = 1:1), impregnated in zeolite was suitable for effective formation of carbon nanotubes (CNTs). As-grown CNTs were characterized by SEM, TEM and Raman spectroscopy. Raman spectroscopy reveals that as-grown CNTs are well graphitized. Raman spectroscopy also reveals that the as-prepared SWNTs have a diameter of about 0.79-1.71 nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号