共查询到20条相似文献,搜索用时 15 毫秒
1.
Yixi Chen Gang Ma Ying Wang Guchao Xu 《IEEJ Transactions on Electrical and Electronic Engineering》2019,14(3):394-402
With the increasing penetration of distributed generation (DG) in power systems, the voltage instability problem of power systems is receiving a great deal of attention. As new power electronics equipment, an electric spring (ES) can effectively restrain the bus voltage fluctuation caused by DG, and in addition achieve the new control paradigm of load demand following power generation. In this article, an adaptive voltage‐regulation control strategy of ES is proposed, in which the proportional integral (PI) postgain changes dynamically according to the real‐time output current of the ES. The simulation results show that, when the proposed control strategy is applied, bus voltage can still be stabilized effectively by the ES under the condition that noncritical loads change. The proposed control strategy brings the adaptive voltage‐regulation capability of the ES, and therefore, it can be in series with multiple noncritical loads reliably and safely, and accordingly the costs can be greatly reduced. © 2018 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc. 相似文献
2.
Eugene Lavretsky 《International Journal of Adaptive Control and Signal Processing》2015,29(12):1515-1525
This note presents analysis and quantification of transient dynamics in Model Reference Adaptive Control (MRAC) with output feedback and observer‐like reference models. A practical design methodology for this class of systems was first introduced in 1 , 2 , where an output error feedback was added to the reference model dynamics. Here, this design is complemented with an analysis of the corresponding transients. Specifically, it is shown that employing observer‐like reference models in MRAC leads to a trade‐off between achieving fast transient dynamics and using large error feedback gains in the modified reference model. For clarity sake, only systems with matched uncertainties are analyzed, yet the reported results can be extended to a broader class of uncertainties by utilizing MRAC modifications for robustness 3 , 4 . The note ends with a summary of the derived results and a discussion on practical design guidelines for adaptive output feedback controllers with observer‐like reference models. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
3.
P. Krishnamurthy F. Khorrami 《International Journal of Adaptive Control and Signal Processing》2003,17(4):285-311
Design of global robust adaptive output‐feedback dynamic compensators for stabilization and tracking of a class of systems that are globally diffeomorphic into systems in generalized output‐feedback canonical form is investigated. This form includes as special cases the standard output‐feedback canonical form and various other forms considered previously in the literature. Output‐dependent non‐linearities are allowed to enter both additively and multiplicatively. The system is allowed to contain unknown parameters multiplying output‐dependent non‐linearities and, also, unknown non‐linearities satisfying certain bounds. Under the assumption that a constant matrix can be found to achieve a certain property, it is shown that a reduced‐order observer and a backstepping controller can be designed to achieve practical stabilization of the tracking error. If this assumption is not satisfied, it is shown that the control objective can be achieved by introducing additional dynamics in the observer. Sufficient conditions under which asymptotic tracking and stabilization can be achieved are also given. This represents the first robust adaptive output‐feedback tracking results for this class of systems. Copyright © 2003 John Wiley & Sons, Ltd. 相似文献
4.
Xidong Tang Gang Tao Suresh M. Joshi 《International Journal of Adaptive Control and Signal Processing》2005,19(6):419-444
An adaptive compensation control scheme using output feedback is designed and analysed for a class of non‐linear systems with state‐dependent non‐linearities in the presence of unknown actuator failures. For a linearly parameterized model of actuator failures with unknown failure values, time instants and pattern, a robust backstepping‐based adaptive non‐linear controller is employed to handle the system failure, parameter and dynamics uncertainties. Robust adaptive parameter update laws are derived to ensure closed‐loop signal boundedness and small tracking errors, in general, and asymptotic regulation, in particular. An application to controlling the angle of attack of a non‐linear hypersonic aircraft dynamic model in the presence of elevator segment failures is studied and simulation results show that the developed adaptive control scheme has desired actuator failure compensation performance. Copyright © 2004 John Wiley & Sons, Ltd. 相似文献
5.
Ikuro Mizumoto Taro Takagi Sota Fukui Sirish L. Shah 《Electrical Engineering in Japan》2014,187(1):24-32
This paper deals with a design problem of an adaptive output feedback control for discrete‐time systems with a parallel feedforward compensator (PFC), which is designed for making the augmented controlled system “Almost Strictly Positive Real” (ASPR). A PFC design scheme by a fictitious reference iterative tuning (FRIT) approach with only using an input/output experimental data set will be proposed for discrete‐time systems in order to design an adaptive output feedback control system. Furthermore, the effectiveness of the proposed PFC design method will be confirmed through numerical simulations by designing an adaptive control system with adaptive NN (neural network) for an uncertain discrete‐time system. © 2014 Wiley Periodicals, Inc. Electr Eng Jpn, 187(1): 24–32, 2014; Published online in Wiley Online Library ( wileyonlinelibrary.com ). DOI 10.1002/eej.22456 相似文献
6.
水轮机导叶开度的自适应非线性输出反馈控制 总被引:3,自引:1,他引:2
水轮机导叶开度的控制归结为一个复杂的非最小相位非线性控制模型,其自适应控制不易采用传统非线性控制方法解决。为解决水轮机导叶开度的自适应控制问题,将通用自适应输出反馈控制应用到水轮机导叶开度的控制。首先通过一个线性可逆变换将水轮机导叶开度控制的非线性模型变换成满足通用自适应输出反馈控制定理要求的形式,然后证明变换后的形式满足通用自适应输出反馈控制定理要求的条件,最后对变换后的模型应用通用自适应输出反馈控制定理得到相应的控制器。数值仿真表明,基于通用自适应输出反馈设计的水轮机导叶非线性开度控制是有效的,且对系统参数变化具有极强的鲁棒性。 相似文献
7.
Jiangbo Yu Hongli Lv Yuqiang Wu 《International Journal of Adaptive Control and Signal Processing》2016,30(6):843-863
This paper is concerned with the global asymptotic regulation control problem for a class of nonlinear uncertain systems with unknown control coefficients. The allowed class of uncertainties include unmeasured input‐to‐state stable (ISS) and/or weaker integral ISS (iISS) inverse dynamics, parametric uncertainties, and uncertain nonlinearities. By using the Nussbaum‐type gain technique and changing the ISS/integral ISS inverse dynamics supply rates, we design a dynamic output feedback controller which could guarantee that the system states are asymptotically regulated to the origin from any initial conditions, and the other signals are bounded in closed‐loop systems. The numerical example of a simple pendulum with all unknown parameters and without velocity measurement illustrates our theoretical results. The simulation results demonstrate its efficacy. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
8.
Yingli Sang Zhengqiang Zhang 《International Journal of Adaptive Control and Signal Processing》2023,37(1):298-314
This article develops a disturbance rejection control strategy using partial-state feedback model reference adaptive control for discrete-time uncertain systems with unknown input disturbances. Adaptive control schemes are proposed for constant disturbances, sinusoidal disturbances, and generic bounded disturbances. The partial-state feedback control is designed based on measurable signals and the parameterization method to counteract the effect of disturbances. The plant-model output matching condition is established. The developed control law is more flexible for applications and has a more concise structure than output feedback control. Additionally, closed-loop stability and asymptotic output tracking are derived. The effectiveness and the feasibility of partial-state feedback disturbance rejection control are verified by simulation results. 相似文献
9.
Guanpeng Kang Xiaonan Xia Tianping Zhang 《International Journal of Adaptive Control and Signal Processing》2019,33(6):972-998
This paper proposes an adaptive neural‐network control design for a class of output‐feedback nonlinear systems with input delay and unmodeled dynamics under the condition of an output constraint. A coordinate transformation with an input integral term and a Nussbaum function are combined to solve the problem of the input possessing both time delay and unknown control gain. By utilizing a barrier Lyapunov function and designing tuning functions, the adjustment of multiparameters is handled with a single adaptive law. The uncertainty of the system is approximated by dynamic signal and radial basis function neural networks (RBFNNs). Based on Lyapunov stability theory, an adaptive tracking control scheme is developed to guarantee all the signals of the closed‐loop systems are semiglobally uniformly ultimately bounded, and the output constraint is not violated. 相似文献
10.
Zhengqiang Zhang Shengyuan Xu Yu Guo Yuming Chu 《International Journal of Adaptive Control and Signal Processing》2010,24(9):743-759
A robust adaptive output‐feedback control scheme is proposed for a class of nonlinear systems with unknown time‐varying actuator faults. Additional unmodelled terms in the actuator fault model are considered. A new linearly parameterized model is proposed. The boundedness of all the closed‐loop signals is established. The desired control performance of the closed‐loop system is guaranteed by appropriately choosing the design parameters. The properties of the proposed control algorithm are demonstrated by two simulation examples. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
11.
Jun Fu Ying Jin Jun Zhao G. M. Dimirovski 《International Journal of Adaptive Control and Signal Processing》2009,23(3):260-277
In this paper, a globally robust stabilizer for a class of uncertain non‐minimum‐phase nonlinear systems in generalized output feedback canonical form is designed. The system contains unknown parameters multiplied by output‐dependent nonlinearities and output‐dependent nonlinearities enter such a system both additively and multiplicatively. The proposed method relies on a recently developed novel parameter estimator and state observer design methodology together with a combination of backstepping and small‐gain approach. Our design has three distinct features. First, the parameter estimator and state observer do not necessarily follow the classical certainty‐equivalent principle any more. Second, the design treats unknown parameters and unmeasured states in a unified way. Third, the technique by combining standard backstepping and small‐gain theorem ensures robustness with respect to dynamic uncertainties. Finally, two numerical examples are given to show that the proposed method is effective, and that it can be applied to more general systems that do not satisfy the cascading upper diagonal dominance conditions developed in recent papers, respectively. Copyright © 2008 John Wiley & Sons, Ltd. 相似文献
12.
Abdallah Benabdallah Mohsen Belfeki 《International Journal of Adaptive Control and Signal Processing》2017,31(5):695-709
In this paper, we solve the problem of global output feedback regulation for uncertain feedforward nonlinear systems. The nonlinear functions, in the class of systems under consideration, are assumed to be dominated by an input‐output function multiplied by an unknown parameter and a linear unmeasured states. Contrarily to the previous works, the interval of the output's power has been expanded from to . A numerical example is provided to illustrate the effectiveness of the proposed design scheme. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
13.
Shuyi Xiao Jiuxiang Dong 《International Journal of Adaptive Control and Signal Processing》2020,34(1):77-91
This paper investigates the problem of output feedback adaptive compensation tracking control for linear systems subject to external disturbances and actuator failures including loss of effectiveness faults and bias faults. The impact of actuator faults on the transient performance of systems can be mitigated predicated on the closed-loop reference model with an additional degrees of design freedom. Using the estimation information provided by the adaptive mechanism, an output feedback adaptive fault-tolerant control strategy is developed to track closed-loop reference model systems. It is shown that all the signals of the resulting closed-loop system are bounded. Finally, simulation results are given to demonstrate the effectiveness of the proposed fault-tolerant tracking control method. 相似文献
14.
Stefano Liuzzo Patrizio Tomei 《International Journal of Adaptive Control and Signal Processing》2009,23(1):97-109
This paper addresses the problem of designing a global, output error feedback based, adaptive learning control for robotic manipulators with revolute joints and uncertain dynamics. The reference signals to be tracked are assumed to be smooth and periodic with known period. By developing in Fourier series expansion the input reference signals of every joint, an adaptive, output error feedback, learning control is designed, which ‘learns’ the input reference signals by identifying their Fourier coefficients: global asymptotic and local exponential stability of the tracking error dynamics are obtained when the Fourier series expansion of each input reference signal is finite, while arbitrary small tracking errors are achieved otherwise. The resulting control is not model based and depends only on the period of the reference signals and on some constant bounds on the robot dynamics. Copyright © 2008 John Wiley & Sons, Ltd. 相似文献
15.
P. Krishnamurthy F. Khorrami 《International Journal of Adaptive Control and Signal Processing》2008,22(1):23-42
We propose an adaptive output‐feedback controller for a general class of nonlinear triangular (strict‐feedback‐like) systems. The design is based on our recent results on a new high‐gain control design approach utilizing a dual high‐gain observer and controller architecture with a dynamic scaling. The technique provides strong robustness properties and allows the system class to contain unknown functions dependent on all states and involving unknown parameters (with no magnitude bounds required). Unlike our earlier result on this problem where a time‐varying design of the high‐gain scaling parameter was utilized, the technique proposed here achieves an autonomous dynamic controller by introducing a novel design of the observer, the scaling parameter, and the adaptation parameter. This provides a time‐invariant dynamic output‐feedback globally asymptotically stabilizing solution for the benchmark open problem proposed in our earlier work with no magnitude bounds or sign information on the unknown parameter being necessary. Copyright © 2007 John Wiley & Sons, Ltd. 相似文献
16.
Majid Mazouchi Mohammad Bagher Naghibi‐Sistani Seyed Kamal Hosseini Sani Farzaneh Tatari Hamidreza Modares 《International Journal of Adaptive Control and Signal Processing》2019,33(2):262-284
This paper develops a relative output‐feedback–based solution to the containment control of linear heterogeneous multiagent systems. A distributed optimal control protocol is presented for the followers to not only assure that their outputs fall into the convex hull of the leaders' output but also optimizes their transient performance. The proposed optimal solution is composed of a feedback part, depending of the followers' state, and a feed‐forward part, depending on the convex hull of the leaders' state. To comply with most real‐world applications, the feedback and feed‐forward states are assumed to be unavailable and are estimated using two distributed observers. That is, a distributed observer is designed to measure each agent's states using only its relative output measurements and the information that it receives by its neighbors. Another adaptive distributed observer is designed, which uses exchange of information between followers over a communication network to estimate the convex hull of the leaders' state. The proposed observer relaxes the restrictive requirement of having access to the complete knowledge of the leaders' dynamics by all the followers. An off‐policy reinforcement learning algorithm on an actor‐critic structure is next developed to solve the optimal containment control problem online, using relative output measurements and without requiring the leaders' dynamics. Finally, the theoretical results are verified by numerical simulations. 相似文献
17.
P. Krishnamurthy F. Khorrami 《International Journal of Adaptive Control and Signal Processing》2016,30(5):690-714
A general class of uncertain nonlinear systems with dynamic input nonlinearities is considered. The system structure includes a core nominal subsystem of triangular structure with additive uncertain nonlinear functions, coupled uncertain nonlinear appended dynamics, and uncertain nonlinear input unmodeled dynamics. The control design is based on dual controller/observer dynamic high‐gain scaling with an additional dynamic scaling based on a singular perturbation‐like redesign to address the non‐affine and uncertain nature of the input appearance in the system dynamics. The proposed approach yields a constructive global robust adaptive output‐feedback control design that is robust to the dynamic input uncertainties and to uncertain nonlinear functions allowed throughout the system structure. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
18.
Meysam Yadegar Nader Meskin Wassim M. Haddad 《International Journal of Adaptive Control and Signal Processing》2019,33(6):943-955
In this paper, we present a control design framework wherein an adaptive‐based corrective signal is augmented to the output of the nominal controller in order to suppress or counteract the effect of malicious actuator attacks. Due to the unavailability of full‐state measurements, a nonminimal controllable realization of the nominal closed‐loop system is used to design the corrective signal predicated on partial state information. Two illustrative numerical examples are given to demonstrate the efficacy of the proposed adaptive control architecture. 相似文献
19.
Magnus Nilsson Bo Egardt 《International Journal of Adaptive Control and Signal Processing》2008,22(9):875-901
Feedback error learning (FEL) is a proposed technique for reference‐feedforward adaptive control. FEL in a linear and time‐invariant (LTI) framework has been studied recently; the studies can be seen as proposed solutions to a ‘feedforward MRAC’ problem. This paper reanalyzes two suggested schemes with new interpretations and conclusions. It motivates the suggestion of an alternative scheme for reference‐feedforward adaptive control, based on a certainty‐equivalence approach. The suggested scheme differs from the analyzed ones by a slight change in both the estimator and the control law. Boundedness and error convergence are then guaranteed when the estimator uses normalization combined with parameter projection onto a convex set where stability of the estimated closed‐loop system holds. Copyright © 2008 John Wiley & Sons, Ltd. 相似文献
20.
S. M. Hoseini M. Farrokhi A. J. Koshkouei 《International Journal of Adaptive Control and Signal Processing》2010,24(1):65-82
This paper presents an adaptive output feedback stabilization method based on neural networks (NNs) for nonlinear non‐minimum phase systems. The proposed controller comprises a linear, a neuro‐adaptive, and an adaptive robustifying parts. The NN is designed to approximate the matched uncertainties of the system. The inputs of the NN are the tapped delays of the system input–output signals. In addition, an appropriate reference signal is proposed to compensate the unmatched uncertainties inherent in the internal system dynamics. The adaptation laws for the NN weights and adaptive gains are obtained using Lyapunov's direct method. These adaptation laws employ a linear observer of system dynamics that is realizable. The ultimate boundedness of the error signals are analytically shown using Lyapunov's method. The effectiveness of the proposed scheme is shown by applying to a translation oscillator rotational actuator model. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献