首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Objective

Amide proton transfer (APT) weighted chemical exchange saturation transfer (CEST) imaging is increasingly used to investigate high-grade, enhancing brain tumours. Non-enhancing glioma is currently less studied, but shows heterogeneous pathophysiology with subtypes having equally poor prognosis as enhancing glioma. Here, we investigate the use of CEST MRI to best differentiate non-enhancing glioma from healthy tissue and image tumour heterogeneity.

Materials & Methods

A 3D pulsed CEST sequence was applied at 3 Tesla with whole tumour coverage and 31 off-resonance frequencies (+6 to -6 ppm) in 18 patients with non-enhancing glioma. Magnetisation transfer ratio asymmetry (MTRasym) and Lorentzian difference (LD) maps at 3.5 ppm were compared for differentiation of tumour versus normal appearing white matter. Heterogeneity was mapped by calculating volume percentages of the tumour showing hyperintense APT-weighted signal.

Results

LDamide gave greater effect sizes than MTRasym to differentiate non-enhancing glioma from normal appearing white matter. On average, 17.9 % ± 13.3 % (min–max: 2.4 %–54.5 %) of the tumour volume showed hyperintense LDamide in non-enhancing glioma.

Conclusion

This works illustrates the need for whole tumour coverage to investigate heterogeneity in increased APT-weighted CEST signal in non-enhancing glioma. Future work should investigate whether targeting hyperintense LDamide regions for biopsies improves diagnosis of non-enhancing glioma.

  相似文献   

2.
Object

Lower-field MR is reemerging as a viable, potentially cost-effective alternative to high-field MR, thanks to advances in hardware, sequence design, and reconstruction over the past decades. Evaluation of lower field strengths, however, is limited by the availability of lower-field systems on the market and their considerable procurement costs. In this work, we demonstrate a low-cost, temporary alternative to purchasing a dedicated lower-field MR system.

Materials and Methods

By ramping down an existing clinical 3 T MRI system to 0.75 T, proton signals can be acquired using repurposed 13C transmit/receive hardware and the multi-nuclei spectrometer interface. We describe the ramp-down procedure and necessary software and hardware changes to the system.

Results

Apart from presenting system characterization results, we show in vivo examples of cardiac cine imaging, abdominal two- and three-point Dixon-type water/fat separation, water/fat-separated MR Fingerprinting, and point-resolved spectroscopy. In addition, the ramp-down approach allows unique comparisons of, e.g., gradient fidelity of the same MR system operated at different field strengths using the same receive chain, gradient coils, and amplifiers.

Discussion

Ramping down an existing MR system may be seen as a viable alternative for lower-field MR research in groups that already own multi-nuclei hardware and can also serve as a testing platform for custom-made multi-nuclei transmit/receive coils.

  相似文献   

3.
Purpose

To improve the precision of a free-breathing 3D saturation-recovery-based myocardial T1 mapping sequence using a post-processing 3D denoising technique.

Methods

A T1 phantom and 15 healthy subjects were scanned on a 1.5 T MRI scanner using 3D saturation-recovery single-shot acquisition (SASHA) for myocardial T1 mapping. A 3D denoising technique was applied to the native T1-weighted images before pixel-wise T1 fitting. The denoising technique imposes edge-preserving regularity and exploits the co-occurrence of 3D spatial gradients in the native T1-weighted images by incorporating a multi-contrast Beltrami regularization. Additionally, 2D modified Look-Locker inversion recovery (MOLLI) acquisitions were performed for comparison purposes. Accuracy and precision were measured in the myocardial septum of 2D MOLLI and 3D SASHA T1 maps and then compared. Furthermore, the accuracy and precision of the proposed approach were evaluated in a standardized phantom in comparison to an inversion-recovery spin-echo sequence (IRSE).

Results

For the phantom study, Bland–Altman plots showed good agreement in terms of accuracy between IRSE and 3D SASHA, both on non-denoised and denoised T1 maps (mean difference −1.4 ± 18.9 ms and −4.4 ± 21.2 ms, respectively), while 2D MOLLI generally underestimated the T1 values (69.4 ± 48.4 ms). For the in vivo study, there was a statistical difference between the precision measured on 2D MOLLI and on non-denoised 3D SASHA T1 maps (P = 0.005), while there was no statistical difference after denoising (P = 0.95).

Conclusion

The precision of 3D SASHA myocardial T1 mapping was substantially improved using a 3D Beltrami regularization based denoising technique and was similar to that of 2D MOLLI T1 mapping, while preserving the higher accuracy and whole-heart coverage of 3D SASHA.

  相似文献   

4.

Objectives

To evaluate an accelerated 4D flow MRI method that provides high temporal resolution in a clinically feasible acquisition time for intracranial velocity imaging.

Materials and methods

Accelerated 4D flow MRI was developed by using a pseudo-random variable-density Cartesian undersampling strategy (CIRCUS) with the combination of k-t, parallel imaging and compressed sensing image reconstruction techniques (k-t SPARSE-SENSE). Four-dimensional flow data were acquired on five healthy volunteers and eight patients with intracranial aneurysms using CIRCUS (acceleration factor of R = 4, termed CIRCUS4) and GRAPPA (R = 2, termed GRAPPA2) as the reference method. Images with three times higher temporal resolution (R = 12, CIRCUS12) were also reconstructed from the same acquisition as CIRCUS4. Qualitative and quantitative image assessment was performed on the images acquired with different methods, and complex flow patterns in the aneurysms were identified and compared.

Results

Four-dimensional flow MRI with CIRCUS was achieved in 5 min and allowed further improved temporal resolution of <30 ms. Volunteer studies showed similar qualitative and quantitative evaluation obtained with the proposed approach compared to the reference (overall image scores: GRAPPA2 3.2 ± 0.6; CIRCUS4 3.1 ± 0.7; CIRCUS12 3.3 ± 0.4; difference of the peak velocities: ?3.83 ± 7.72 cm/s between CIRCUS4 and GRAPPA2, ?1.72 ± 8.41 cm/s between CIRCUS12 and GRAPPA2). In patients with intracranial aneurysms, the higher temporal resolution improved capturing of the flow features in intracranial aneurysms (pathline visualization scores: GRAPPA2 2.2 ± 0.2; CIRCUS4 2.5 ± 0.5; CIRCUS12 2.7 ± 0.6).

Conclusion

The proposed rapid 4D flow MRI with a high temporal resolution is a promising tool for evaluating intracranial aneurysms in a clinically feasible acquisition time.
  相似文献   

5.
Magnetic Resonance Materials in Physics, Biology and Medicine - Investigation of the feasibility and performance of phosphorus (31P) magnetic resonance spectroscopic imaging (MRSI) at 9.4 T with a...  相似文献   

6.
Magnetic Resonance Materials in Physics, Biology and Medicine - High resolution MRI of the intracranial vessel wall provides important insights in the assessment of intracranial vascular disease....  相似文献   

7.
Objective

Dysphagia or difficulty in swallowing is a potentially hazardous clinical problem that needs regular monitoring. Real-time 2D MRI of swallowing is a promising radiation-free alternative to the current clinical standard: videofluoroscopy. However, aspiration may be missed if it occurs outside this single imaged slice. We therefore aimed to image swallowing in 3D real time at 12 frames per second (fps).

Materials and methods

At 3 T, three 3D real-time MRI acquisition approaches were compared to the 2D acquisition: an aligned stack-of-stars (SOS), and a rotated SOS with a golden-angle increment and with a tiny golden-angle increment. The optimal 3D acquisition was determined by computer simulations and phantom scans. Subsequently, five healthy volunteers were scanned and swallowing parameters were measured.

Results

Although the rotated SOS approaches resulted in better image quality in simulations, in practice, the aligned SOS performed best due to the limited number of slices. The four swallowing phases could be distinguished in 3D real-time MRI, even though the spatial blurring was stronger than in 2D. The swallowing parameters were similar between 2 and 3D.

Conclusion

At a spatial resolution of 2-by-2-by-6 mm with seven slices, swallowing can be imaged in 3D real time at a frame rate of 12 fps.

  相似文献   

8.
Purpose: To evaluate whether time-resolved 3D MR-angiography at 3T with a net acceleration factor of eight is applicable in clinical routine and to evaluate whether good image quality and a low artifact level can be achieved with a temporal update rate that allows for additional information on pathologies. Materials and methods: Thirty-one consecutive patients underwent time-resolved 3D contrast-enhanced MR-angiography on a 3T system. Imaging consisted of accelerated 3D gradient echo sequences combining parallel imaging with an acceleration factor of four, partial Fourier acquisition along phase and slice encoding direction, and twofold temporal acceleration using view sharing. Data volumes representing the arterial and venous contrast phases were independently evaluated by two experienced radiologists by grading of image quality and artifact level on a 0–3 scale. Results: Time-resolved MR-angiography was successfully performed in all subjects without the need for contrast agent bolus timing. Excellent arterial (average score = 2.65 ± 0.32) and good venous (average score = 2.56 ± 0.28) diagnostic image quality and little image degrading due to artifacts (average score = 2.20 ± 0.16) were confirmed by both independent readers (agreement in 65.2% of all evaluations). In 14 patients vascular pathologies were identified in the arterial phases. In eight examinations temporal resolution and depiction of contrast agent dynamics provided additional information about pathology. Discussion: Without the necessity for additional bolus timing, time-resolved 3D contrast-enhanced MR-angiography with imaging acceleration along both the spatial encoding direction and temporal domain revealed excellent diagnostic image quality in neurovascular and thoracic imaging. Despite the limited spatial resolution as compared to high-resolution imaging of the carotid artery bifurcation, the results demonstrate the applicability of contrast-enhanced MR-angiography in thoracic and abdominal MRA as well as cervical imaging with a temporal update rate allowing for additional information on pathologies. Future studies may include an evaluation of optimal trade-offs between spatial and temporal resolution, different acceleration factors and a comparison to the gold-standard for accuracy.  相似文献   

9.
Magnetic Resonance Materials in Physics, Biology and Medicine - There is a discrepancy between studies suggesting that higher bone marrow fat saturation is associated with impaired health, and...  相似文献   

10.
Objective

Although increasing evidence suggests a central mechanism of action for sacral neuromodulation, the exact mechanism remains unclear. We set up a scanning paradigm to measure brain activation related to various stages of rectal filling using rectal balloon distention.

Materials and Methods

Six healthy volunteers underwent rectal balloon distention during MRI scanning at a 1.5T scanner with a Tx/Rx head coil. MR images were collected at four levels of distention: empty balloon (EB), first sensation volume (FSV), desire to defecate volume (DDV), maximum tolerable volume (MTV). Data were analyzed using BrainVoyager 20.4. Whole brain and ROI-based fixed-effects general linear model analyses were performed on the fMRI time-course data from all participants.

Results

Rectal filling until FSV evoked the most blood-oxygen-level-dependent responses in several clusters throughout the cortex, followed by the responses evoked by rectal filling until DDV. Interestingly, rectal filling until MTV evoked negative responses compared to baseline throughout the cortex. No negative side effects were found.

Discussion

This study shows that a standardized paradigm for functional MRI combined with rectal filling is feasible and safe in healthy volunteers and is ready to be used in fecal incontinent patients to assess whether their brain activity differs from healthy controls.

  相似文献   

11.
Objective

Clinical relevance of dynamic glucose enhanced (DGE) chemical exchange saturation transfer (CEST) imaging has mostly been demonstrated at ultra-high field (UHF) due to low effect size. Results of a cohort study at clinical field strength are shown herein.

Materials and methods

Motion and field inhomogeneity corrected T1ρ‐based DGE (DGE⍴) images were acquired before, during and after a d-glucose injection with 6.3 s temporal resolution to detect accumulation in the brain. Six glioma patients with clear blood–brain barrier (BBB) leakage, two glioma patients with suspected BBB leakage, and three glioma patients without BBB leakage were scanned at 3 T.

Results

In high-grade gliomas with BBB leakage, d-glucose uptake could be detected in the gadolinium (Gd) enhancing region as well as in the tumor necrosis with a maximum increase of ∆DGE⍴ around 0.25%, whereas unaffected white matter did not show any significant DGE⍴ increase. Glioma patients without Gd enhancement showed no detectable DGE⍴ effect within the tumor.

Conclusion

First application of DGE⍴ in a patient cohort shows an association between BBB leakage and DGE signal irrespective of the tumor grade. This indicates that glucoCEST corresponds more to the disruptions of BBB with Gd uptake than to the molecular tumor profile or tumor grading.

  相似文献   

12.
Objective

To measure healthy brain \({T}_{1}\) and \({T}_{2}\) relaxation times at 0.064 T.

Materials and methods

\({T}_{1}\) and \({T}_{2}\) relaxation times were measured in vivo for 10 healthy volunteers using a 0.064 T magnetic resonance imaging (MRI) system and for 10 test samples on both the MRI and a separate 0.064 T nuclear magnetic resonance (NMR) system. In vivo \({T}_{1}\) and \({T}_{2}\) values are reported for white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF) for automatic segmentation regions and manual regions of interest (ROIs).

Results

\({T}_{1}\) sample measurements on the MRI system were within 10% of the NMR measurement for 9 samples, and one sample was within 11%. Eight \({T}_{2}\) sample MRI measurements were within 25% of the NMR measurement, and the two longest \({T}_{2}\) samples had more than 25% variation. Automatic segmentations generally resulted in larger \({T}_{1}\) and \({T}_{2}\) estimates than manual ROIs.

Discussion

\({T}_{1}\) and \({T}_{2}\) times for brain tissue were measured at 0.064 T. Test samples demonstrated accuracy in WM and GM ranges of values but underestimated long \({T}_{2}\) in the CSF range. This work contributes to measuring quantitative MRI properties of the human body at a range of field strengths.

  相似文献   

13.
Objective

To determine T1 and T2 relaxation times of healthy pancreas parenchyma at 7 T using a multi-transmit system.

Materials and methods

Twenty-six healthy subjects were scanned with a 7 T MR system using eight parallel transceiver antennas, each with two additional receive loops. A Look-Locker sequence was used to obtain images for T1 determination, while T2 was obtained from spin-echo images and magnetic resonance spectroscopy measurements with different echo times. T1 and T2 times were calculated using a mono-exponential fit of the average magnitude signal from a region of interest in the pancreas and were tested for correlation with age.

Results

The age range of the included subjects was 21–72 years. Average T1 and T2 relaxation times in healthy pancreas were 896 ± 149 ms, and 26.7 ± 5.3 ms, respectively. No correlation with age was found.

Conclusion

T1 and T2 relaxation times of the healthy pancreas were reported for 7 T, which can be used for image acquisition optimization. No significant correlations were found between age and T1 or T2 relaxation times of the pancreas. Considering their low standard deviation and no observable age dependence, these values may be used as a baseline to study potentially pancreatic tissue affected by disease.

  相似文献   

14.
Magnetic Resonance Materials in Physics, Biology and Medicine - An approach is presented for high-field MRI studies of the cardiovascular system (CVS) of a marine crustacean, the edible crab Cancer...  相似文献   

15.
Liu  Yuchi  Hamilton  Jesse  Jiang  Yun  Seiberlich  Nicole 《Magma (New York, N.Y.)》2023,36(3):513-523
Magnetic Resonance Materials in Physics, Biology and Medicine - The goal of this work was to assess the feasibility of performing MRF in the liver on a 0.55&nbsp;T scanner and to examine the...  相似文献   

16.
Objective

Oxygen-loaded nanobubbles have shown potential for reducing tumour hypoxia and improving treatment outcomes, however, it remains difficult to noninvasively measure the changes in partial pressure of oxygen (PO2) in vivo. The linear relationship between PO2 and longitudinal relaxation rate (R1) has been used to noninvasively infer PO2 in vitreous and cerebrospinal fluid, and therefore, this experiment aimed to investigate whether R1 is a suitable measurement to study oxygen delivery from such oxygen carriers.

Methods

T1 mapping was used to measure R1 in phantoms containing nanobubbles with varied PO2 to measure the relaxivity of oxygen (r1Ox) in the phantoms at 7 and 3 T. These measurements were used to estimate the limit of detection (LOD) in two experimental settings: preclinical 7 T and clinical 3 T MRI.

Results

The r1Ox in the nanobubble solution was 0.00057 and 0.000235 s−1/mmHg, corresponding to a LOD of 111 and 103 mmHg with 95% confidence at 7 and 3 T, respectively.

Conclusion

This suggests that T1 mapping could provide a noninvasive method of measuring a > 100 mmHg oxygen delivery from therapeutic nanobubbles.

  相似文献   

17.
Magnetic Resonance Materials in Physics, Biology and Medicine - MR fingerprinting (MRF) is a MR technique that allows assessment of tissue relaxation times. The purpose of this study is to evaluate...  相似文献   

18.
Objective

In this perfusion magnetic resonance imaging study, the performances of different pseudo-continuous arterial spin labeling (PCASL) sequences were compared: two-dimensional (2D) single-shot readout with simultaneous multislice (SMS), 2D single-shot echo-planar imaging (EPI) and multishot three-dimensional (3D) gradient and spin echo (GRASE) sequences combined with a background-suppression (BS) module.

Materials and methods

Whole-brain PCASL images were acquired from seven healthy volunteers. The performance of each protocol was evaluated by extracting regional cerebral blood flow (rCBF) measures using an inline morphometric segmentation prototype. Image data postprocessing and subsequent statistical analyses enabled comparisons at the regional and sub-regional levels.

Results

The main findings were as follows: (i) Mean global CBF obtained across methods was were highly correlated, and these correlations were significantly higher among the same readout sequences. (ii) Temporal signal-to-noise ratio and gray-matter-to-white-matter CBF ratio were found to be equivalent for all 2D variants but lower than those of 3D-GRASE.

Discussion

Our study demonstrates that the accelerated SMS readout can provide increased acquisition efficiency and/or a higher temporal resolution than conventional 2D and 3D readout sequences. Among all of the methods, 3D-GRASE showed the lowest variability in CBF measurements and thus highest robustness against noise.

  相似文献   

19.

Objectives

To evaluate and compare conventional T1-weighted 2D turbo spin echo (TSE), T1-weighted 3D volumetric interpolated breath-hold examination (VIBE), and two-point 3D Dixon-VIBE sequences for automatic segmentation of visceral adipose tissue (VAT) volume at 3 Tesla by measuring and compensating for errors arising from intensity nonuniformity (INU) and partial volume effects (PVE).

Materials and methods

The body trunks of 28 volunteers with body mass index values ranging from 18 to 41.2 kg/m2 (30.02 ± 6.63 kg/m2) were scanned at 3 Tesla using three imaging techniques. Automatic methods were applied to reduce INU and PVE and to segment VAT. The automatically segmented VAT volumes obtained from all acquisitions were then statistically and objectively evaluated against the manually segmented (reference) VAT volumes.

Results

Comparing the reference volumes with the VAT volumes automatically segmented over the uncorrected images showed that INU led to an average relative volume difference of ?59.22 ± 11.59, 2.21 ± 47.04, and ?43.05 ± 5.01 % for the TSE, VIBE, and Dixon images, respectively, while PVE led to average differences of ?34.85 ± 19.85, ?15.13 ± 11.04, and ?33.79 ± 20.38 %. After signal correction, differences of ?2.72 ± 6.60, 34.02 ± 36.99, and ?2.23 ± 7.58 % were obtained between the reference and the automatically segmented volumes. A paired-sample two-tailed t test revealed no significant difference between the reference and automatically segmented VAT volumes of the corrected TSE (p = 0.614) and Dixon (p = 0.969) images, but showed a significant VAT overestimation using the corrected VIBE images.

Conclusion

Under similar imaging conditions and spatial resolution, automatically segmented VAT volumes obtained from the corrected TSE and Dixon images agreed with each other and with the reference volumes. These results demonstrate the efficacy of the signal correction methods and the similar accuracy of TSE and Dixon imaging for automatic volumetry of VAT at 3 Tesla.
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号