首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
In this article, the adaptive finite-time fault-tolerant control problem is considered for a class of switched nonlinear systems in nonstrict-feedback form with actuator fault. The problem of finite-time fault-tolerant control is solved by introducing a finite-time performance function. Meanwhile, the completely unknown nonlinear functions exist in the switched system are identified by the neural networks. Based on the common Lyapunov function method with adaptive backstepping technique, the finite-time fault-tolerant controller is designed. The proposed control strategy can guarantee that the tracking error converges to a prescribed zone at a finite-time and all system variables remain semiglobally practical finite-time stable. Numerical examples are offered to verify the feasibility of the theoretical result.  相似文献   

2.
An alternative adaptive control with prescribed performance is proposed to address the output tracking of nonlinear systems with a nonlinear dead zone input. An appropriate function that characterizes the convergence rate, maximum overshoot, and steady‐state error is adopted and incorporated into an output error transformation, and thus the stabilization of the transformed system is sufficient to achieve original tracking control with prescribed performance. The nonlinear dead zone is represented as a time‐varying system and Nussbaum‐type functions are utilized to deal with the unknown control gain dynamics. A novel high‐order neural network with a scalar adaptive weight is developed to approximate unknown nonlinearities, thus the computational costs can be diminished dramatically. Some restrictive assumptions on the system dynamics and the dead‐zone are circumvented. Simulations are included to validate the effectiveness of the proposed scheme. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
This article focuses on the decentralized adaptive fuzzy fixed-time fault-tolerant control issue for the error-constrained interconnected nonlinear systems with unknown actuator faults possessing dead zone. The unknown nonlinear functions can be modeled via fuzzy logic systems. By utilizing the parameter estimation method, the effect of unknown actuator faults possessing dead zone can be compensated. To guarantee the predefined dynamic performance of state tracking errors, the barrier Lyapunov functions and prescribed performance functions are introduced. Then, a dual-performance fault-tolerant control method that can guarantee fast transient performance and predefined performance of state tracking errors is proposed via using the decentralized backstepping technique. In addition, on the basis of the Lyapunov stability theory and the fixed-time criterion, it is proved that the predefined performance of full-state errors and the stability of closed-loop systems can be guaranteed. Finally, two numerical examples are provided to illustrate the effectiveness of the proposed control scheme.  相似文献   

4.
In this paper, an adaptive prescribed performance control method is presented for a class of uncertain strict feedback nonaffine nonlinear systems with the coupling effect of time‐varying delays, dead‐zone input, and unknown control directions. Owing to the universal approximation property, fuzzy logic systems are used to approximate the uncertain terms in the system. Since there is no systematic approach to determine the required upper bounds of errors in control systems, the prior selection of control parameters to have a satisfactory performance is somehow impossible. Therefore, the prescribed performance technique as a solution is applied in this study to bring satisfactory performance indices to the system such as overshoot and steady state performance within a predetermined bound. Dynamic surface control strategy is also introduced to the proposed control scheme to address the “explosion of complexity” behavior existing in conventional backstepping methods. To ease the control design, the mean‐value theorem is utilized to transform the nonaffine system into the affine one. Moreover, with the help of this theorem, the unknown dead‐zone nonlinearity is separated into the linear and nonlinear disturbance‐like bounded term. The proposed method relaxes a prior knowledge of control direction by employing Nussbaum‐type functions, and the effect of time‐varying delays are compensated by constructing the proper Lyapunov‐Krasovskii functions. The proposed controller guarantees that all the closed‐loop signals are semiglobally uniformly ultimately bounded and the error evolves within the decaying prescribed bounds. In the end, in order to demonstrate the superiority of this method, simulation examples are given.  相似文献   

5.
This paper studies an adaptive fuzzy dynamic surface control for a class of nonlinear systems with fuzzy dead zone, unmodeled dynamics, dynamical disturbances, and unknown control gain functions. The unknown system functions are approximated by the Takagi‐Sugeno–type fuzzy logic systems. There are 3 main features for the presented systematic design scheme. First, by adopting an integrated method, a novel adaptive fuzzy controller is constructed for the nonlinear system with fuzzy dead zone. Second, only 3 online learning parameters need to be tuned, which significantly reduces the computation burden. Third, the possible controller singularity problem in some of the existing adaptive control methods with feedback linearization techniques can be avoided. On the basis of the backstepping technique and dynamic surface control, all the signals of the closed‐loop system are guaranteed to be semiglobally uniformly ultimately bounded. Finally, 2 simulation examples are provided to illustrate the effectiveness of the proposed scheme.  相似文献   

6.
This article studies the adaptive fuzzy finite-time quantized control problem of stochastic nonlinear nonstrict-feedback systems with full state constraints. During the control design process, fuzzy logic systems are used to identify the unknown nonlinear functions, integral barrier Lyapunov functions are employed to solve the state constrained problem. In the frame of backstepping design, an adaptive fuzzy finite-time quantized control scheme is developed. Based on the stochastic finite-time Lyapunov stability theory, it can be guaranteed that the closed-loop system is semiglobal finite-time stable in probability, and the tracking errors converge to a small neighborhood of the origin in a finite time. Finally, two simulation examples are provided to testify the effectiveness of the developed control scheme.  相似文献   

7.
This paper focuses on a finite‐time adaptive fuzzy control problem for nonstrict‐feedback nonlinear systems with actuator faults and prescribed performance. Compared with existing results, the finite‐time prescribed performance adaptive fuzzy output feedback control is under study for the first time. By designing performance function, the transient performance of the corresponding controlled variable is maintained in a prescribed area. Combining the finite‐time stability criterion with backstepping technique, a feasible adaptive fault‐tolerant control scheme is proposed to guarantee that the system output converges to a small neighborhood of the origin in finite time, and the closed‐loop signals are bounded. Finally, simulation results are shown to illustrate the effectiveness of the presented control method.  相似文献   

8.
The ultrasonic motor has comparatively high nonlinearity which varies with driving conditions, and possesses a variable dead zone in control input associated with the applied load torque. The dead zone is a problem for industrial applications and it is important to eliminate the dead zone in order to improve control performance. This paper proposes a new position control scheme for ultrasonic motors to overcome the dead zone. The dead zone is compensated by fuzzy inference, and backstepping control performs accurate position control. Compared with model reference adaptive control, which uses an augmented error, backstepping control can analyze a transient response. Mathematical models are formulated and experimental results show the effectiveness of the proposed position control scheme. © 2004 Wiley Periodicals, Inc. Electr Eng Jpn, 149(1): 69–77, 2004; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/eej.20016  相似文献   

9.
In this paper, the issue of adaptive neural control is discussed for a class of stochastic nonstrict-feedback constrained nonlinear systems with input and state unmodeled dynamics. A dynamic signal produced by the first-order auxiliary system is employed to deal with the dynamical uncertain terms. Radial basis function neural networks are used to reconstruct unknown nonlinear continuous functions. With the help of the mean value theorem and Young's inequality, only one learning parameter is adjusted online at recursive each step. Using the hyperbolic tangent function as nonlinear mapping, the output constrained stochastic nonstrict-feedback system in the presence of unmodeled dynamics is transformed into a novel unconstrained stochastic nonstrict-feedback system. Based on dynamic surface control technology and the property of Gaussian function, adaptive neural control is developed for the transformed stochastic nonstrict-feedback system. The output abides by stochastic constraints in probability. By the Lyapunov method, all signals of the closed-loop control system are proved to be semi-global uniform ultimate bounded (SGUUB) in probability. The obtained theoretical findings are verified by two numerical examples.  相似文献   

10.
In this article, the prescribed performance control strategy is extended to multi-input multi-output nonstrict-feedback nonlinear systems with asymmetric input saturation, and not only each element in tracking error vector converges to a prescribed small region within preassigned finite time, but also the converging mode during the preset time is prespecifiable and controllable explicitly. By blending the barrier function with novel speed function, a prescribed performance controller using command-filtered-based vector-backstepping design framework is proposed to steer the tracking error vector for the first time, where the boundedness of filter errors is guaranteed by sufficiently small time constant and an error compensator is constructed to handle the effects of filter errors. To attenuate the adverse effects resulted from nondifferentiable input saturation, hyperbolic tangent function is utilized to estimate asymmetric saturation function such that the control input is designed as a new state variable with initial value of zero in augmented system. Nussbaum function is employed to overcome singularity problem caused by the differentiation of hyperbolic tangent function. At each step of backstepping design, the universal approximation property of neural network and the command filter system are utilized to approximate uncertain dynamics and to solve algebraic loop obstacle due to nonstrict-feedback structure, respectively. Moreover, only one parameter needs to be updated online to cope with the lumped uncertain dynamics by virtual parameter technology, rendering a control strategy with low complexity computation. The validity of the presented controller is verified by theoretical analysis and two-link robotic system.  相似文献   

11.
In this article, a novel fuzzy adaptive finite-time nonsmooth controller is developed to handle the finite-time tracking problem for a class of uncertain nonlinear systems. Different from traditional fuzzy adaptive approximation methods, proposed method contains only one adaptive parameter, no matter how many states there are in the system. By constructing a new Lyapunov function with prescribed performance bound, the transient and steady performances of control system can be ensured. Further, based on a criterion of finite-time semiglobal practical stability and backstepping technology, a novel fuzzy adaptive finite-time nonsmooth control method is designed. It can be demonstrated that proposed control can effectively ensure tracking error tends to small neighborhood in a finite time. Finally, two examples have been simulated by the proposed control method, and it shows effective tracking performance.  相似文献   

12.
In this paper, an adaptive integral sliding mode control (ISMC) scheme is developed for a class of uncertain multi‐input and multi‐output nonlinear systems with unknown external disturbance, system uncertainty, and dead‐zone. The research is motivated by the fact that the ISMC scheme against unknown external disturbance and system uncertainty is very important for multi‐input and multi‐output nonlinear systems. The system uncertainty, the unknown external disturbance, and the effect of dead‐zone are integrated as a compounded disturbance, which is well estimated using a sliding mode disturbance observer (SMDO). Then, the adaptive ISMC based on the designed SMDO is presented to guarantee the satisfactory tracking performance in the presence of system uncertainty, external disturbance, and dead‐zone. Finally, the designed adaptive ISMC strategy based on SMDO is applied to the attitude control of the near space vehicle, and simulation results are presented to illustrate the effectiveness of the proposed adaptive ISMC scheme using the SMDO. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
This paper focuses on the adaptive fuzzy event-triggered consensus control problem for multi-agent systems (MAS) with prescribed performance and input quantization. Based on a prescribed performance function and an input quantization decomposition method, a new adaptive fuzzy event-triggered consensus protocol is presented. The instances in the event-triggered mechanism are triggered only when the event-triggered error exceeds a specified threshold, which can save limited communication resources. It is demonstrated that the event-triggered control protocol ensures that all signals in the MAS are semi-globally uniformly ultimately bounded. As a result, the consensus tracking errors converge to prescribed limits. Finally, simulation examples are provided to validate effectiveness of the proposed event-triggered control methods.  相似文献   

14.
This research addresses the stability analysis and adaptive state‐feedback control for a class of nonlinear discrete‐time systems with multiple interval time‐varying delays and symmetry dead zone. The multiple interval time‐varying delays and symmetry dead zone are considered in the nonlinear discrete‐time system. The multiple interval time‐varying delays are bounded by the nonlinear function with unknown coefficients, and the symmetry dead zone is considered without the knowledge of the dead zone parameters. The adaptive state‐feedback controller is designed for the nonlinear discrete‐time systems with multiple interval time‐varying delays and dead zone. The discrete Lyapunov‐Krasovskii functional is introduced, such that the solutions of the closed‐loop error system converge to an adjustable bounded region and the state errors can be rendered arbitrarily small by adjusting the adaptive parameters. The designed adaptive state‐feedback controller does not require the knowledge of maximum and minimum values for the characteristic slopes of the dead zone. Finally, three simulation examples are given to show the effectiveness of the proposed methods.  相似文献   

15.
The control of systems that have sandwiched nonsmooth nonlinearities, such as a dead‐zone sandwiched between two dynamic blocks, is addressed. An adaptive inverse control scheme using a hybrid controller structure and a neural network based inverse compensator, is proposed for such systems with unknown sandwiched dead‐zone. This neural‐hybrid controller consists of an inner loop discrete‐time feedback structure incorporated with an adaptive inverse using a neural network for the unknown dead‐zone, and an outer‐loop continuous‐time feedback control law for achieving desired output tracking. The dead‐zone compensator consists of two neural networks, one used as an estimator of the sandwiched dead‐zone function and the other for the compensation itself. The compensator neural network has neurons that can approximate jump functions such as a dead‐zone inverse. The weights of the two neural networks are tuned using a modified gradient algorithm. Simulation results are given to illustrate the performance of the proposed neural‐hybrid controller. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

16.
In this paper, an observer-based adaptive neural output-feedback control scheme is developed for a class of nonlinear stochastic nonstrict-feedback systems with input saturation in finite-time interval. The mean value theorem and the property of the smooth function are applied to cope with the difficulties caused by the existence of input saturation. According to the universal approximation capability of the radial basis function neural network, it will be utilized to compensate the unknown nonlinear functions. Based on the state observer, the finite-time Lyapunov stability theorem, we propose an adaptive neural output-feedback control scheme for nonlinear stochastic systems in nonstrict-feedback form. The developed controller guarantees that the system output signal can track the given reference signal trajectory, and all closed-loop signals are semi-globally finite-time stability in probability. The observer errors and the tracking error can converge to a small neighborhood of the origin. Finally, simulation results demonstrate the effectiveness of the developed control scheme.  相似文献   

17.
In this paper, an adaptive dead zone inverse is proposed for control of systems containing an unknown dead zone. It is shown that the effect of the unknown dead zone on the closed-loop control system can be eliminated asymptotically if both input and output measurements of the dead zone are available. Two schemes are proposed along with their convergence and robustness analyses. © 1998 John Wiley & Sons, Ltd.  相似文献   

18.
In this paper, based on an adaptive nonbackstepping design algorithm, we proposed a novel variable universe of discourse fuzzy control (VUDFC) approach for a class of single‐input–single‐output strict‐feedback nonlinear systems with unknown dead‐zone inputs. Firstly, we convert the form of system into a normal form on the basis of some new state variables and coordinate transformation; at the same time, state‐feedback control is changed to output‐feedback control. Secondly, we design observers to estimate the new unmeasurable states. Then, different from considering the traditional backstepping‐based fuzzy control scheme, we introduce a direct VUDFC scheme, which is mainly based on changing of contraction‐expansion factors to modify the universe of discourse online, and fuzzy rules can automatically reproduce to develop the control performance; thus, the size of initial rule base is greatly reduced. This new algorithm can alleviate tracking error, improve the accuracy of the system, and strengthen robustness. Lastly, according to Lyapunov theorem analysis, we prove that all the signals in the closed‐loop system can be guaranteed to be stable, and the output can track the reference signal very well. Simulation results illustrated the effectiveness of the proposed VUDFC approach.  相似文献   

19.
We consider standard robust adaptive control designs based on the dead‐zone and projection modifications, and compare their performance w.r.t. a worst case transient cost functional penalizing the ?? norm of the output, control and control derivative. If a bound on the ?? norm of the disturbance is known, it is shown that the dead‐zone controller outperforms the projection controller if the a priori information on the uncertainty level is sufficiently conservative. The second result shows that the projection controller is superior to the dead‐zone controller when the a priori information on the disturbance level is sufficiently conservative. For conceptual clarity the results are presented on a non‐linear scalar system with a single uncertain parameter and generalizations are briefly discussed. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

20.
This article proposes an adaptive prescribed performance tracking control methodology for a class of strict-feedback Multiple Inputs and Multiple Outputs nonlinear systems. A combination of backstepping technique and the generalized fuzzy hyperbolic model was used in recursive design of adaptive controller. A novel performance constraint function guarantees the tracking control performance. Lyapunov stability analysis proves that the designed controller can ensure the predefined transient and all signals within the closed-loop systems are semiglobally uniformly ultimately bounded. In the end, simulation results illustrate the validity of the proposed approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号