首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
This article is devoted to investigating the compound conditions event-triggered prescribed performance tracking problem for strict-feedback nonlinear multiagent systems with nonlinear output faults and unknown disturbances. A simplified event-triggered sampling condition is designed to successfully reduce the number of state triggered design parameters. Besides, a compound conditions event-triggered mechanism is constructed, which integrates state triggered and controller triggered simultaneously to reduce communication burden. Furthermore, by using disturbance observers and prescribed performance functions, unknown external disturbances are compensated and the tracking errors can converge into the prescribed boundary, respectively. Moreover, all the signals of the closed-loop system are semiglobally uniformly ultimately bounded. Finally, the availability of the proposed control strategy is testified via simulation results.  相似文献   

2.
This article investigates the issue of adaptive finite-time tracking control for a category of output-constrained nonlinear systems in a non-strict-feedback form. First, by utilizing the structural characteristics of radial basis function neural networks (RBF NNs), a backstepping design method is extended from strict-feedback systems to a kind of more general systems, and NNs are employed to approximate unknown nonlinear functions. In addition, the system output is constrained to the specified region by applying the barrier Lyapunov function (BLF) technique. Furthermore, the finite-time stability of the system is proved by employing the Bhat and Bernstein theorem. As a result, an adaptive finite-time tracking control scheme for the output-constrained nonlinear systems with non-strict-feedback structure is proposed by applying RBF NNs, BLF, finite-time stability theory, and adaptive backstepping technique. It is demonstrated the finite-time stability of the system, the prescribed convergence of the system output and tracking error, the boundedness of adaptive parameters and state variables. Finally, a simulation example is implemented to illustrate the effectiveness of the presented neural control scheme.  相似文献   

3.
In this article, the adaptive finite-time fault-tolerant control problem is considered for a class of switched nonlinear systems in nonstrict-feedback form with actuator fault. The problem of finite-time fault-tolerant control is solved by introducing a finite-time performance function. Meanwhile, the completely unknown nonlinear functions exist in the switched system are identified by the neural networks. Based on the common Lyapunov function method with adaptive backstepping technique, the finite-time fault-tolerant controller is designed. The proposed control strategy can guarantee that the tracking error converges to a prescribed zone at a finite-time and all system variables remain semiglobally practical finite-time stable. Numerical examples are offered to verify the feasibility of the theoretical result.  相似文献   

4.
In this article, the problem of output feedback tracking control for uncertain Markov jumping nonlinear systems is studied. A finite-time control scheme based on command filtered backstepping and adaptive neural network (NN) technique is given. The finite-time command filter solves the problem of differential explosions for virtual control signals, the NN is utilized to approximate the uncertain nonlinear dynamics and the adaptive NN observer is applied to restructure the state of system. The finite-time error compensation mechanism is established to compensate the errors brought by filtering process. The proposed finite-time tracking control algorithm can ensure that the solution of the closed-loop system is practically finite-time stable in mean square. Two simulation examples are employed to demonstrate the effectiveness of the proposed control algorithm.  相似文献   

5.
In this article, the fuzzy adaptive finite-time consensus tracking control problem for nonstrict feedback nonlinear multiagent systems with full-state constraints is studied. The finite-time control based on command filtered backstepping is proposed to guarantee the finite-time convergence and eliminate the explosion of complexity problem caused by backstepping process, and the errors in the filtering process are compensated by using error compensation mechanism. Furthermore, based on the fuzzy logic systems, the uncertain nonlinear dynamics are approximated and the problem of state variables in nonstrict feedback form is solved by using the property of basis functions. The barrier Lyapunov functions are introduced to guarantee that all system states and compensated tracking error signals are constrained in the designed regions. A simulation example is given to verify the superiority of the proposed algorithm.  相似文献   

6.
This article concentrates on an adaptive finite-time fault-tolerant fuzzy tracking control problem for nonstrict feedback nonlinear systems with input quantization and full-state constraints. By utilizing the fuzzy logic systems and less adjustable parameters method, the unknown nonlinear functions are addressed in each step process. In addition, a dynamic surface control technique combined with fuzzy control is introduced to tackle the variable separation problem. The problem for the effect of quantization and unlimited number of actuator faults is tackled by a damping term with smooth function in the intermediate control law. Finite-time stability is achieved by combining barrier Lyapunov functions and backstepping method. The finite-time controller is designed such that all the responses of the systems are semiglobal practical finite-time stable and ensured to remain in the predefined compact sets while tracking error converges to a small neighborhood of the origin in finite time. Finally, simulation examples are utilized to testify the validity of the investigated strategy.  相似文献   

7.
This article studies the adaptive fuzzy finite-time quantized control problem of stochastic nonlinear nonstrict-feedback systems with full state constraints. During the control design process, fuzzy logic systems are used to identify the unknown nonlinear functions, integral barrier Lyapunov functions are employed to solve the state constrained problem. In the frame of backstepping design, an adaptive fuzzy finite-time quantized control scheme is developed. Based on the stochastic finite-time Lyapunov stability theory, it can be guaranteed that the closed-loop system is semiglobal finite-time stable in probability, and the tracking errors converge to a small neighborhood of the origin in a finite time. Finally, two simulation examples are provided to testify the effectiveness of the developed control scheme.  相似文献   

8.
The article investigates the finite-time adaptive fuzzy control for a class of nonlinear systems with output constraint and input dead-zone. First, by skillfully combining the barrier Lyapunov function, backstepping design method, and finite-time control theory, a novel adaptive state-feedback tracking controller is constructed, and the output constraint of the nonlinear system is not violated. Second, the fuzzy logic system is used to approximate unknown function in the nonlinear system. Third, the finite-time command filter is introduced to avoid the problem of “complexity explosion” caused by repeated differentiations of the virtual control signal in conventional backstepping control schemes. Meanwhile, a new saturation function is added in the compensating signal for filter error to improve control accuracy. Finally, based on Lyapunov stability analysis, all the signals of the closed-loop are proved to be semi-globally uniformly ultimately bounded, and the tracking error converges to a small neighborhood region of the origin in a finite time. A simulation example is presented to demonstrate the effectiveness for the proposed control scheme.  相似文献   

9.
In this paper, the problem of adaptive fuzzy finite-time consensus tracking control for multiple Euler-Lagrange systems (ELSs) with uncertain dynamics and unknown control directions (UCDs) is investigated. The computational complexity problem in conventional backstepping is avoided by using finite-time command filter (FTCF), and the error in the filtering process is eliminated through error compensation signals. The fuzzy logic system combined with the adaptive control technique is applied to approximate and estimate the unknown nonlinear dynamics of ELS. The Nussbaum function-based continuous and nonsmooth input control torque is established to eliminate the influence of UCDs, and the proposed control scheme can guarantee the consensus tracking errors converge to the desired neighborhood of the origin within a finite time. Numerical simulation is used to test the effectiveness of the given algorithm.  相似文献   

10.
In this article, an adaptive fuzzy output feedback control method is presented for nonlinear time-delay systems with time-varying full state constraints and input saturation. To overcome the problem of time-varying constraints, the integral barrier Lyapunov functions (IBLFs) integrating with dynamic surface control (DSC) are applied for the first time to keep the state from violating constraints. The effects of unknown time delays can be removed by using designed Lyapunov-Krasovskii functions (LKFs). An auxiliary design system is introduced to solve the problem of input saturation. The unknown nonlinear functions are approximated by the fuzzy logic systems (FLS), and the unmeasured states are estimated by a designed fuzzy observer. The novel controller can guarantee that all signals remain semiglobally uniformly ultimately bounded and satisfactory tracking performance is achieved. Finally, two simulation examples illustrate the effectiveness of the presented control methods.  相似文献   

11.
针对具有由非线性外部系统产生的未知不确定性函数和未建模动态的非线性不确定系统,研究了其跟踪和干扰抑制问题。首先运用状态变换将输出调节问题转化为非线性系统的镇定问题,接着引入动态信号解决了动态扰动,并设计出高增益的状态观测器去估计不可测的状态。然后根据外系统信息设计自适应的非线性内模,结合自适应控制理论、Backstepping设计方法、模糊控制方法和Lyapunov法给出了输出反馈的自适应模糊控制器和自适应控制律,所提出的输出反馈控制器和自适应律能够实现整个闭环系统的跟踪和干扰抑制,并使得跟踪误差能渐近收敛到给定的任意小的领域内。最后仿真结果验证了所提出的控制器的有效性。  相似文献   

12.
In this paper, the tracking control problem for a class of nonlinear time-delay multiagent systems with input saturation is considered. The nonlinear dynamics are dominated by strict-feedback form and satisfy Lipschitz conditions with constant gains. First, it indicated that the tracking control problem is equivalent to a general bound problem of high-dimensional multivariable systems. Second, an ingenious state transformation is utilized to change the bound problem into the parameter design problem. Third, by the static gain control technique and the hyperbolic tangent function, both state feedback and output feedback controllers are built such that all signals of the closed-loop systems are globally bounded, and the tracking errors between the followers and the leader can converge to a small neighborhood around the origin by appropriately selecting parameters. Finally, an example is shown to verify the feasibility of our results.  相似文献   

13.
This paper considers the problem of adaptive fuzzy output‐feedback tracking control for a class of switched stochastic nonlinear systems in pure‐feedback form. Unknown nonlinear functions and unmeasurable states are taken into account. Fuzzy logic systems are used to approximate the unknown nonlinear functions, and a fuzzy observer is designed to estimate the immeasurable states. Based on these methods, an adaptive fuzzy output‐feedback control scheme is developed by combining the backstepping recursive design technique and the common Lyapunov function approach. It is shown that all the signals in the closed‐loop system are semiglobally uniformly ultimately bounded in mean square in the sense of probability, and the observer errors and tracking errors can be regulated to a small neighborhood of the origin by choosing appropriate parameters. Finally, a simulation result is provided to show the effectiveness of the proposed control method.  相似文献   

14.
This article is concerned about an adaptive dynamic surface control (DSC) of output constrained stochastic nonlinear systems with unknown control directions and unmodeled dynamics. Nonlinear mapping-based backstepping control design is presented for stochastic nonlinear systems with output constraint. The explosion of complexity exists in tradition backstepping method is avoided by using the DSC technique. The radial basis function neural networks are employed to deal with unknown nonlinear functions. Nussbaum gain technique is employed to handle the unknown control directions. And a dynamic signal is employed to dominate the unmodeled dynamics. The adaptive controller is designed can ensure that the tracking error converges on a small region of the origin. And all signals of the closed-loop systems are semiglobal uniformly ultimately bounded. Finally, the results of the simulation cases are provided to show the effectivity of the designed controller scheme.  相似文献   

15.
The trajectory tracking control problem for a class of nonlinear systems with uncertain parameters is considered in this article. A new adaptive finite-time tracking control is designed based on the adaptive backstepping method via the command filters. The command filter mechanism can avoid the calculation of partial derivatives and solve the “explosion of complexity” in the backstepping design. The compensation signals are introduced to eliminate errors produced by the command filters. The proposed adaptive backstepping control can guarantee the tracking error remains in a small neighborhood of the origin in finite time, while the practical finite-time stability of the control systems with uncertain parameters is proven by the stability criterion. The effectiveness of the proposed scheme is verified by some simulation results.  相似文献   

16.
This work presents an adaptive saturation compensation scheme for the strict-feedback uncertain systems with unknown control coefficient and input saturation. An adaptive saturation dynamic filter that does not require the a priori information of the completely unknown control coefficient is incorporated to correct position errors online to reduce the saturation effect. A Nussbaum-type function is employed to handle the unknown control coefficient and avoid the control singularity. The adaptive command-filtered backstepping is employed to derive the adaptive controller. The repeated differential operations of stabilizing functions required in the traditional backstepping are obviated due to command filters. It is analyzed that the designed adaptive controller achieves the system output tracking and the closed-loop uniform ultimate stability. A simulation example is provided to validate the scheme.  相似文献   

17.
In this article, the tracking control problem is investigated for a class of nonlinear systems in the presence of unknown disturbance, input saturation, actuator fault, and unknown control coefficient. A novel disturbance observer-based adaptive fault-tolerant tracking control strategy is proposed with regard to nonlinear systems. Based on the Gaussian error function, the auxiliary dynamic system is designed to offset effects caused by the input saturation. Moreover, the Nussbaum-type function is employed to avert control singularity and deal with the unknown control coefficient. A theoretical analysis indicates that the boundedness of all signals in the closed-loop system can be guaranteed. Finally, two examples with one concerning the dynamic point-the-bit rotary steerable drilling tool system are given to confirm the validity of the method.  相似文献   

18.
In this article, a novel fuzzy adaptive finite-time nonsmooth controller is developed to handle the finite-time tracking problem for a class of uncertain nonlinear systems. Different from traditional fuzzy adaptive approximation methods, proposed method contains only one adaptive parameter, no matter how many states there are in the system. By constructing a new Lyapunov function with prescribed performance bound, the transient and steady performances of control system can be ensured. Further, based on a criterion of finite-time semiglobal practical stability and backstepping technology, a novel fuzzy adaptive finite-time nonsmooth control method is designed. It can be demonstrated that proposed control can effectively ensure tracking error tends to small neighborhood in a finite time. Finally, two examples have been simulated by the proposed control method, and it shows effective tracking performance.  相似文献   

19.
A decentralized prescribed performance adaptive tracking control problem is investigated for Markovian jump uncertain nonlinear interconnected large‐scale systems. The considered interconnected large‐scale systems contain unknown nonlinear uncertainties, unknown control gains, actuator saturation, and Markovian jump signals, and the Markovian jump subsystems are in the form of triangular structure. First, by defining a novel state transformation with the performance function, the prescribed performance control problem is transformed to stabilization problem. Then, introducing an intermediate control signal into the control design, employing neural network to approximate the unknown composite nonlinear function, and based on the framework of the backstepping control design and adaptive estimation method, a corresponding decentralized prescribed performance adaptive tracking controller is designed. It is proved that all the signals in the closed‐loop system are bounded, and the prescribed tracking performances are guaranteed. A numerical example is provided to illustrate the effectiveness of the proposed control strategy. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
In this paper, an observer-based adaptive neural output-feedback control scheme is developed for a class of nonlinear stochastic nonstrict-feedback systems with input saturation in finite-time interval. The mean value theorem and the property of the smooth function are applied to cope with the difficulties caused by the existence of input saturation. According to the universal approximation capability of the radial basis function neural network, it will be utilized to compensate the unknown nonlinear functions. Based on the state observer, the finite-time Lyapunov stability theorem, we propose an adaptive neural output-feedback control scheme for nonlinear stochastic systems in nonstrict-feedback form. The developed controller guarantees that the system output signal can track the given reference signal trajectory, and all closed-loop signals are semi-globally finite-time stability in probability. The observer errors and the tracking error can converge to a small neighborhood of the origin. Finally, simulation results demonstrate the effectiveness of the developed control scheme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号