首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
本文通过不同烧结温度制备出两种显微结构的高纯Al2O3陶瓷,采用四种不同的加工方式,制备出不同表面状态的高纯Al2O3陶瓷样品.利用轮廓仪测量样品表面粗糙度,并利用扫描电镜对其表面显微形貌进行分析.然后,将各种不同表面形貌的高纯Al2O3陶瓷进行高温Mo-Mn法金属化,并用Ag焊料进行封接.最后,测试出不同表面形貌的高纯Al2O3陶瓷金属化封接强度,进而研究高纯氧化铝陶瓷表面形貌对其Mo-Mn金属化封接强度的影响.结果发现,表面未加工高纯Al2O3陶瓷金属化封接强度高、一致性最好.  相似文献   

2.
采用CaO-Al_2O_3-SiO_2玻璃体系作为金属化中的玻璃活化剂,在高纯(99%)氧化铝陶瓷表面烧结Mo金属化层。研究了金属化烧结温度、CaO及Al_2O_3含量和TiO_2的加入对于金属化层烧结强度的影响。结果表明Ca-Al-Si玻璃系统可在1450℃左右进行金属化烧结,同时在提高CaO与Al_2O_3含量后有助于金属化烧结,TiO_2的加入则对金属化烧结有不利影响。  相似文献   

3.
以W为原料,MnO、Al2O3和SiO2为活化剂,采用烧结金属粉末法,于1450~1500℃的还原性气氛(氨分解气)中烧结,在99BeO(纯度大于99%的BeO)陶瓷基板表面形成了W金属层,研究了活化剂含量、金属化膜厚度以及99BeO陶瓷晶粒大小对其金属化性能的影响。结果表明:当添加的活化剂质量分数为20%,金属化膜厚度约为35μm,BeO陶瓷晶粒大小约为39μm时,99BeO陶瓷金属化层的抗拉强度达到最大值65MPa。  相似文献   

4.
通过对95%Al2O3陶瓷Mo-Mn金属化层烧结前后显微结构的分析,对不同Mo含量金属化配方的块状烧结体及高纯高致密Al2O3陶瓷表面金属化层显微结构的研究,探讨了95%Al2O3陶瓷Mo-Mn金属化层的烧结过程,揭示了Mo骨架结构中Mo颗粒间气孔形成的机理.  相似文献   

5.
通过对95%Al2O3陶瓷Mo-Mn金属化层烧结前后显微结构的分析,对不同Mo含量金属化配方的块状烧结体及高纯高致密Al2O3陶瓷表面金属化层显微结构的研究,探讨了95%Al2O3陶瓷Mo-Mn金属化层的烧结过程,揭示了Mo骨架结构中Mo颗粒间气孔形成的机理.  相似文献   

6.
采用反应厚膜法实现了AlN基板表面的铜金属化,借助SEM、XRD分别对烧结后的厚膜层、还原后的铜金属化层以及界面层的成分和形貌进行了研究;测试了不同烧结温度下金属化基板的敷接强度,并探究了界面层的形成过程以及对敷接强度的影响。结果表明:烧结过后,厚膜层的主要成分是CuO和Cu_2O;经过还原处理后,其表面成分转变为金属Cu;同时,随着烧结温度的上升,烧结后的厚膜层和还原后的金属化层的致密度均呈现先增加后降低的趋势,金属化铜层与基板之间的敷接强度也呈现相同的变化趋势。另外,在金属化铜层和AlN基板之间存在界面化合物,其主要成分是Cu_2O和中间化合物(CuAlO_2和CuAl_2O_4),其中,Cu_2O对敷接强度不利,而尖晶石结构的CuAl_2O_4和细小薄片状的CuAlO_2对敷接强度的有利。  相似文献   

7.
通过对高纯、细晶Al2O3陶瓷金属化层、金属化层被酸腐蚀后的陶瓷表面显微结构及金属化层中元素在金属化层与陶瓷中的分布情况分析,探讨了高纯、细晶Al2O3陶瓷的Mo-Mn金属化机理。研究发现高纯、细晶Al2O3陶瓷的金属化机理与95%Al2O3陶瓷存在很大不同,高纯、细晶Al2O3陶瓷金属化时,Al2O3相通过溶解-沉淀传质过程,细小颗粒和固体颗粒表面凸起部分溶解,并在金属化层中的较大Al2O3颗粒表面析出。在Al2O3颗粒生长和形状改变的同时,金属化层形成致密结构,完成了烧结,实现了金属化层与高纯、细晶Al2O3陶瓷的紧密结合。  相似文献   

8.
采用BaO-Al2O3-SiO2(BAS)微晶玻璃的母体玻璃作为烧结助剂,在氧化铝陶瓷表面低温烧结Mo金属化层。研究了金属化烧结温度及BAS含量对样品抗拉强度的影响,讨论了金属化机理。结果表明:以BAS微晶玻璃的母体玻璃作为烧结助剂,可在1500~1550℃烧成Mo金属化层,金属化层致密,连接样品的抗拉强度大于260 MPa。  相似文献   

9.
针对以国内新研发的Au导体浆料与电阻浆料在Al_2O_3基片表面印制的Au导体/电阻复合厚膜烧结易起泡的现象,在探明起泡原因的基础上,研究了烧结温度、升温速率以及Au层厚度对复合厚膜起泡的影响,进一步优化厚膜工艺,制备出无起泡的复合厚膜。研究表明,烧成温度过高导致的玻璃相浮于复合膜层表面并结晶,烧结过程不充分和Au层厚度不足等导致不能在陶瓷基片/Au层界面形成连续的玻璃相粘结层,界面结合强度大大降低,在陶瓷基片/Au层界面易起泡。在烧结峰值温度为825℃,升温速率为40℃/min,Au导体层厚度为10μm的工艺条件下,复合厚膜与陶瓷基片结合紧密,无起泡现象。  相似文献   

10.
研究了高温共烧厚膜导体钨浆料的制备工艺,分析了金属钨粉微观形貌及粒度分布,无机粘结相含量对印刷分辨率、金属化与陶瓷基板的结合强度、金属化层方阻值的影响。为满足微电子封装要求,通过选用粒度小于5μm、表面光滑的球形的两种钨粉进行混合,添加适量无机粘结相和以乙基纤维素为主的有机载体,采用球磨或者三轴研磨机进行有效分散,并将浆料粘度控制在一定范围内,制备出适合100μm线宽/间距精细印刷、金属化与陶瓷基板的结合强度54 MPa、方阻值为6mΩ/□的金属化浆料。将研制的金属化钨浆料应用在作为微波器件封装外壳的信号输入输出端口的陶瓷绝缘子上,在29~31GHz的Ka波段,绝缘子的插入损耗为0.4dB,电压驻波比(VSWR)小于1.15。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号