首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tyk2 belongs to the Janus kinase (JAK) family of receptor associated tyrosine kinases, characterized by a large N-terminal region, a kinase-like domain and a tyrosine kinase domain. It was previously shown that Tyk2 contributes to interferon-alpha (IFN-alpha) signaling not only catalytically, but also as an essential intracellular component of the receptor complex, being required for high affinity binding of IFN-alpha. For this function the tyrosine kinase domain was found to be dispensable. Here, it is shown that mutant cells lacking Tyk2 have significantly reduced IFN-alpha receptor 1 (IFNAR1) protein level, whereas the mRNA level is unaltered. Expression of the N-terminal region of Tyk2 in these cells reconstituted wild-type IFNAR1 level, but did not restore the binding activity of the receptor. Studies of mutant Tyk2 forms deleted at the N terminus indicated that the integrity of the N-terminal region is required to sustain IFNAR1. These studies also showed that the N-terminal region does not directly modulate the basal autophosphorylation activity of Tyk2, but it is required for efficient in vitro IFNAR1 phosphorylation and for rendering the enzyme activatable by IFN-alpha. Overall, these results indicate that distinct Tyk2 domains provide different functions to the receptor complex: the N-terminal region sustains IFNAR1 level, whereas the kinase-like domain provides a function toward high affinity ligand binding.  相似文献   

2.
The affinity and specificity of the binding interaction between ligands and their receptors are key for appropriate hormonal regulation of target tissues. However, it is now apparent that vasoactive intestinal polypeptide (VIP) binds to the rat secretin receptor with similar affinity to that for its natural ligand, secretin (Holtmann et al., 1995). In this report, we establish that this is not a characteristic of the human secretin receptor, and use rat-human secretin receptor chimeras, site mutants and truncated receptor constructs to establish the molecular basis for this unusual binding interaction. Of note, isolated N-terminal domains of the rat secretin and the VIP receptors are capable of high affinity binding of VIP. In the recently recognized secretin family of receptors, this domain has six conserved cysteine residues and disulfide bonds that are likely important to achieve the complex conformation critical for this binding. A single acidic residue (Asp98) present in the rat secretin receptor appears to be critical, because a site-mutant changing this to the polar, but uncharged residue present in that position in the human receptor (Asn) eliminates the high affinity binding of VIP. Of interest, a previously identified critical basic residue in VIP (Lys15) provides a candidate for charge-pairing with this residue, potentially aligning the peptide ligand in a nonproductive orientation within this receptor.  相似文献   

3.
A series of deltorphin I analogs containing D- or L-N-methylalanine (MeAla), D- or L-proline (Pro), alpha-aminoisobutyric acid (Aib), sarcosine (Sar) or D-tert-leucine (Tle) in place of D-Ala2, or phenylalanine in place of Tyr1, was synthesized. The opioid activity profiles of these peptides were determined in mu and delta opioid receptor-representative binding assays and bioassays in vitro as well as in the rat tail flick test in vivo. In comparison with the deltorphin I parent, both the L- and the D-MeAla2-analog were slightly more potent delta agonists in the mouse vas deferens (MDV) assay, and the D-MeAla2-analog showed two-fold higher antinociceptive potency in the analgesic test. In view of the fact that deltorphin analogs with an unsubstituted L-amino acid residue in the 2-position generally lack opioid activity, the observed high delta opioid potency of [L-MeAla2]deltorphin I is postulated to be due to the demonstrated presence of a conformer with a cis Tyr1-MeAla2 peptide bond, since the cis conformer allows for a spatial arrangement of the pharmacophoric moieties in the N-terminal tripeptide segment similar to that in active deltorphin analogs containing a D-amino acid residue in the 2-position. Substitution of Aib in the 2-position led to a compound, H-Tyr-Aib-Phe-Asp-Val-Val-Gly-NH2, which displayed lower delta receptor affinity than the parent peptide but higher delta selectivity and, surprisingly, three times higher antinociceptive potency. The D- and L-Pro2-, Sar2- and D-Tle2-analogs showed much reduced delta receptor affinities and were inactive in the tail flick test. Replacement of Tyr1 in deltorphin I with Phe produced a 32-fold decrease in delta receptor affinity but only a 7-fold drop in antinociceptive potency.  相似文献   

4.
A potent and selective endogenous agonist for the mu-opiate receptor   总被引:1,自引:0,他引:1  
Peptides have been identified in mammalian brain that are considered to be endogenous agonists for the delta (enkephalins) and kappa (dynorphins) opiate receptors, but none has been found to have any preference for the mu receptor. Because morphine and other compounds that are clinically useful and open to abuse act primarily at the mu receptor, it could be important to identify endogenous peptides specific for this site. Here we report the discovery and isolation from brain of such a peptide, endomorphin-1 (Tyr-Pro-Trp-Phe-NH2), which has a high affinity (Ki = 360 pM) and selectivity (4,000- and 15,000-fold preference over the delta and kappa receptors) for the mu receptor. This peptide is more effective than the mu-selective analogue DAMGO in vitro and it produces potent and prolonged analgesia in mice. A second peptide, endomorphin-2 (Tyr-Pro-Phe-Phe-NH2), which differs by one amino acid, was also isolated. The new peptides have the highest specificity and affinity for the mu receptor of any endogenous substance so far described and they may be natural ligands for this receptor.  相似文献   

5.
Granulocyte-macrophage colony-stimulating factor (GM-CSF) regulates the growth and function of several myeloid cell types at different stages of maturation. The effects of GM-CSF are mediated through a high affinity receptor that is composed of two chains: a unique, ligand-specific alpha chain and a beta common chain (beta c) that is also a component of the receptors for interleukin 3 (IL-3) and IL-5. Beta c plays an essential role in the transduction of extra cellular signals to the nucleus through its recruitment of secondary messengers. Several downstream signaling events induced by GM-CSF stimulation have been described, including activation of tyrosine kinases and tyrosine phosphorylation of cellular proteins (including beta c) and activation of the Ras/mitogen-activated protein kinase and the JAK/STAT pathways. A region within the beta c cytoplasmic tail (amino acids 517-763) has been reported to be necessary for tyrosine phosphorylation of the adapter protein, Shc, and for the subsequent GM-CSF-induced activation of Ras. In this paper, we describe a physical association between the tyrosine phosphorylated GM-CSF receptor (GMR)-beta c chain and Shc in vivo. Using a series of cytoplasmic truncation mutants of beta c and various mutant Shc proteins, we demonstrate that the N-terminal phosphotyrosine-binding (PTB) domain of Shc binds to a short region of beta c (amino acids 549-656) that contains Tyr577. Addition of a specific phosphopeptide encoding amino acids surrounding this tyrosine inhibited the interaction between beta c and shc. Moreover, mutation of a key residue within the phosphotyrosine binding pocket of the Shc-PTB domain abrogated its association with beta c. These observations provide an explanation for the previously described requirement for Tyr577 of beta c for GM-CSF-induced tyrosine phosphorylation of Shc and have implications for Ras activation through the GM-CSF, IL-3, and IL-5 receptors.  相似文献   

6.
Angiotensin II, Asp-Arg-Val-Tyr-His-Pro-Phe, binds its receptor with a postulated turn centered at residue four. Analogs of angiotensin II which contain a disulfide bridge between the side chains of residues 3 and 5 retain significant activity consistent with this hypothesis. Incorporation of 4-mercaptoproline residues, a hybrid, or chimeric amino acid which combines the properties of proline and homocysteine, into either of these positions with analogous disulfide bridges allows retention of high affinity for the receptor. These more highly constrained bicyclic systems give new insight into the details of molecular recognition of residues 3-5 of angiotensin by the receptor. Retention of activity by the antiparallel dimer of [Sar1,Cys3,5]-AII in which the peptide backbone is held in an extended conformation was unexpected. Analysis of the conformational constraints imposed in these active analogs suggests that AII agonists bind to their receptor with different backbone conformations in the region of the central tyrosine residue.  相似文献   

7.
The recently isolated peptides endomorphin-1 and endomorphin-2 have been suggested to be the endogenous ligands for the mu receptor. In traditional opioid receptor binding assays in mouse brain homogenates, both endomorphin-1 and endomorphin-2 competed both mu1 and mu2 receptor sites quite potently. Neither compound had appreciable affinity for either delta or kappa1 receptors, confirming an earlier report. However, the two endomorphins displayed reasonable affinities for kappa3 binding sites, with Ki values between 20 and 30 nM. Both endomorphins competed 3H-[D-Ala2, MePhe4,Gly(ol)5] enkephalin binding to MOR-1 receptors expressed in CHO cells with high affinity. In mouse brain homogenates 125I-endomorphin-1 and 125I-endomorphin-2 binding was selectively competed by mu ligands. 125I-Endomorphin-1 and 125I-endomorphin-2 also labeled MOR-1 receptors expressed in CHO cells with high affinity. Autoradiography of the two 125I-labeled endomorphins demonstrated regional patterns in the brain similar to those previously observed for mu drugs. Pharmacologically, the endomorphins were potent analgesics. Although they were equipotent supraspinally, endomorphin-1 was more potent spinally. Endomorphin analgesia was effectively blocked by naloxone, as well as the mu-selective antagonists beta-funaltrexamine and naloxonazine. In CXBK mice, which are insensitive to supraspinal morphine, neither endomorphin was active, consistent with a mu mechanism of action. Finally, the endomorphins inhibited gastrointestinal transit. In conclusion, these results support the mu selectivity of these agents.  相似文献   

8.
Hepatocyte growth factor (HGF) is a heterodimeric molecule composed of the alpha-chain containing the N-terminal hairpin domain, four kringle domains, and the serine protease-like beta-chain. We prepared HGF/NK4 and HGF/beta from the entire HGF after single-cut digestion with elastase. HGF/NK4 contains the N-terminal hairpin and four kringle domains, while HGF/beta is composed of the C-terminal 16 amino acids of the alpha-chain and the entire beta-chain, linked by a disulfide bridge. HGF/NK4 competitively inhibited the binding of 125I-HGF to the receptor, and affinity cross-linking analysis indicated that HGF/NK4 alone can bind to the c-Met receptor. In contrast, HGF/beta alone did not competitively inhibit the binding of 125I-HGF to the receptor and did not bind to the c-Met/HGF receptor. Scatchard analysis and affinity cross-linking experiments indicated that HGF/beta specifically binds to c-Met in the presence of HGF/NK4 but not HGF/NK2. Neither HGF/NK4 nor HGF/beta alone induced mitogenic, motogenic (cell scattering), and morphogenic (induction of branching tubulogenesis) responses; however, HGF/beta did induce these biological responses in the presence of HGF/NK4. Consistent with these results, although neither HGF/NK4 alone nor HGF/beta alone induced tyrosine phosphorylation of the c-Met/HGF receptor, HGF/beta induced tyrosine phosphorylation of the receptor when c-Met/HGF receptor was occupied by HGF/NK4. These results indicate that HGF/beta binds to the c-Met/HGF receptor that is occupied by HGF/NK4 and induces receptor tyrosine phosphorylation and the subsequent biological activities of HGF. We propose that there exists a unique cooperative interaction between alpha- and beta-chains, this interaction leading to beta-chain-dependent receptor tyrosine phosphorylation and subsequent biological responses.  相似文献   

9.
The importance of a cluster of conserved aromatic residues of human epidermal growth factor (hEGF) to the receptor binding epitope is suggested by the interaction of His10 and Tyr13 of the A-loop with Tyr22 and Tyr29 of the N-terminal beta-sheet to form a hydrophobic surface on the hEGF protein. Indeed, Tyr13 has previously been shown to contribute a hydrophobic determinant to receptor binding. The roles of His10, Tyr22 and Tyr29 were investigated by structure-function analysis of hEGF mutant analogues containing individual replacements of each residue. Substitutions with aromatic residues or a leucine at position 10 retained receptor affinities and agonist activities similar to wild-type indicating that an aromatic residue is not essential. Variants with polar, charged or aliphatic substitutions altered in size and/or hydrophobicity exhibited reduced binding and agonist activities. 1-Dimensional 1H NMR spectra of high, moderate and low-affinity analogues at position 10 suggested only minor alterations in hEGF native structure. In contrast, a variety of replacements were tolerated at position 22 or 29 indicating that neither aromaticity nor hydrophobicity of Tyr22 and Tyr29 is required for receptor binding. CD spectra of mutant analogues at position 22 or 29 indicated a correlation between loss of receptor affinity and alterations in hEGF structure. The results indicate that similar to Tyr13, His10 of hEGF contributes hydrophobicity to the receptor binding epitope, whereas Tyr22 and Tyr29 do not appear to be directly involved in receptor interactions. The latter conclusion, together with previous studies, suggests that hydrophobic residues on only one face of the N-terminal beta-sheet of hEGF are important in receptor recognition.  相似文献   

10.
Protein tyrosine phosphatases regulate diverse cellular processes and represent important targets for therapeutic intervention in a number of diseases. The crystal structures of protein tyrosine phosphatase 1B (PTP1B) in complex with small molecule inhibitors based upon two classes of phosphotyrosine mimetics, the (difluoronaphthylmethyl)phosphonic acids and the fluoromalonyl tyrosines, have been determined to resolutions greater than 2.3 A. The fluoromalonyl tyrosine residue was incorporated within a cyclic hexapeptide modeled on an autophosphorylation site of the epidermal growth factor receptor. The structure of this inhibitor bound to PTP1B represents the first crystal structure of a non-phosphonate-containing inhibitor and reveals the mechanism of phosphotyrosine mimicry by the fluoromalonyl tyrosine residue and the nature of its interactions within the catalytic site of PTP1B. In contrast to complexes of PTP1B with phosphotyrosine-containing peptides, binding of the fluoromalonyl tyrosine residue to the catalytic site of PTP1B is not accompanied by closure of the catalytic site WPD loop. Structures of PTP1B in complex with the (difluoronaphthylmethyl)phosphonic acid derivatives reveal that substitutions of the naphthalene ring modulate the mode of inhibitor binding to the catalytic site and provide the potential for enhanced inhibitor affinity and the generation of PTP-specific inhibitors. These results provide a framework for the rational design of higher affinity and more specific phosphotyrosine mimetic inhibitors of not only protein tyrosine phosphatases but also SH2 and PTB domains.  相似文献   

11.
Two distinct components, alpha and beta chains, which compose the high affinity receptor for human granulocyte-macrophage colony-stimulating factor (GM-CSF) do not contain any catalytic domains of known enzymes. However, in mouse lymphoid cell lines transfected with cDNAs of the both chains, GM-CSF triggers tyrosine phosphorylation of several cellular proteins and allows continuous proliferation. To elucidate whether the high affinity receptor functions in nonhematopoietic cells, we have reconstituted human GM-CSF receptor in mouse NIH3T3 fibroblasts. In NIH3T3 clones, in which the high affinity receptor is reconstituted, human GM-CSF has triggered rapid tyrosine phosphorylation of cellular proteins, transfected beta chain, and another protein of 40-45 kDa. Moreover, human GM-CSF stimulated DNA synthesis and induced morphological transformation. These observations indicate that coordinately expressed alpha and beta chains of human GM-CSF receptor activates intrinsic protein-tyrosine kinases by the stimulation with human GM-CSF and that the activated protein-tyrosine kinases phosphorylate tyrosine residues of an intrinsic 40-45-kDa protein and the transfected beta chain in NIH3T3 cells. Activation of the protein-tyrosine kinases is likely to have biological functions to induce DNA synthesis and morphological transformation of mouse fibroblasts.  相似文献   

12.
Many cell surface proteins are marked for endocytosis by a cytoplasmic sequence motif, tyrosine-X-X-(hydrophobic residue), that is recognized by the mu2 subunit of AP2 adaptors. Crystal structures of the internalization signal binding domain of mu2 complexed with the internalization signal peptides of epidermal growth factor receptor and the trans-Golgi network protein TGN38 have been determined at 2.7 angstrom resolution. The signal peptides adopted an extended conformation rather than the expected tight turn. Specificity was conferred by hydrophobic pockets that bind the tyrosine and leucine in the peptide. In the crystal, the protein forms dimers that could increase the strength and specificity of binding to dimeric receptors.  相似文献   

13.
A series of opioid ligands utilizing the 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) fluorophores 4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene++ +-3-propionic acid or 4,4-difluoro-5-(4-phenyl-1,3-butadienyl)-4-bora-3a,4a-diaza- s-indacene-3-propionic acid were synthesized and characterized for their ability to act as a suitable fluorescent label for the mu opioid receptor. All compounds displaced the mu opioid receptor binding of [3H]Tyr-D-Ala-Gly-(Me)Phe-Gly-ol in monkey brain membranes with high affinity. The binding of fluorescent ligands to delta and kappa receptors was highly variable. 5,7-Dimethyl-BODIPY naltrexamine, "6-BNX," displayed subnanomolar affinities for the mu and kappa opioid receptors (Ki 0.07 and 0.43 nM, respectively) and nanomolar affinity at the delta (Ki 1.4 nM) receptor. Using fluorescence spectroscopy, the binding of 6-BNX in membranes from C6 glioma cells transfected with the cloned mu opioid receptor was investigated. In these membranes containing a high receptor density (10-80 pmol/mg protein), 6-BNX labeling was saturable, mu opioid specific, stereoselective (as determined with the isomers dextrorphan and levorphanol), and more than 90% specific. The results describe a series of newly developed fluorescent ligands for the mu opioid receptor and the use of one of these ligands as a label for the cloned mu receptor. These ligands provide a new approach for studying the structural and biophysical nature of opioid receptors.  相似文献   

14.
A superfamily of growth factor and cytokine receptors has recently been identified, which is characterized by four spatially conserved cysteine residues, a tryptophan-serine motif (WSXWS) in the extracellular domain, and a proline-rich cytoplasmic domain. The high affinity human granulocyte-macrophage colony-stimulating factor (GM-CSF) receptor (hGM-CSFR) consists of two subunits, alpha (hGM-CSFR alpha) and beta (hGM-CSFR beta), both of which are members of the receptor superfamily. In this study, we prepared mutations in conserved amino acids of the receptor subunit necessary for GM-CSF binding (hGM-CSFR alpha) and analyzed mutant receptors for low affinity binding, internalization, and high affinity binding when complexed with the beta subunit. Mutations in the cytoplasmic domain did not affect GM-CSF binding or receptor internalization. Mutation of a single conserved serine residue within the WSXWS motif diminishes cell surface receptor expression but not ligand binding. Mutation of either the second or third conserved cysteine residue of hGM-CSFR alpha resulted in complete loss of low affinity binding; however, co-expression of the cysteine 2 mutant with hGM-CSFR beta yielded a high affinity receptor complex. Since neither the cysteine 2 mutant nor the beta subunit can bind ligand alone, this result suggests that hGM-CSFR alpha and hGM-CSFR beta exist in a preformed heterodimeric protein complex on the plasma membrane.  相似文献   

15.
Flt-1 tyrosine kinase, vascular endothelial growth factor (VEGF) receptor-1, binds VEGF and a new VEGF-related ligand, placenta growth factor, but KDR/Flk-1 (VEGF receptor-2) binds only VEGF. To characterize the functional regions in the Flt-1 extracellular domain such as the ligand binding region and the dimer formation of the receptor, we constructed a series of mutants of the Flt-1 extracellular domain as soluble forms in a baculovirus system. We found that a region carrying the N-terminal 1st to 3rd immunoglobulin (Ig)-like domains of Flt-1 binds both ligands with high affinity. However, for dimer formation of soluble Flt-1, a region further downstream in the Flt-1 extracellular domain was required. Mutant Flt-1 receptors expressed in COS cells confirmed the requirement of the 4th to 7th Ig region for the activation of Flt-1 tyrosine kinase. Soluble Flt-1 carrying the N-terminal 1st to 3rd Ig region suppressed VEGF-dependent endothelial proliferation in vitro to the same level as the larger forms of soluble Flt-1, suggesting that the binding of one soluble Flt-1 molecule to one subunit of the VEGF homodimer may be sufficient to block the VEGF activity.  相似文献   

16.
The effects of acute exposure of the opioid peptide [D-Ala2,N-MePhe4, Gly-ol5]enkephalin (DAMGO) on the mu-opioid receptor were examined in Chinese hamster ovary (CHO) K-1 and baby hamster kidney stable transfectants. In the CHO cell line, acute 1-hr treatment with DAMGO decreased the density of receptors without affecting the affinity or proportion of agonist-detected sites and attenuated the ability of the agonist to inhibit forskolin-stimulated cAMP accumulation. In contrast, similar 1-hr treatment of baby hamster kidney cells did not affect receptor density or agonist ability to inhibit cAMP accumulation, but longer duration of agonist exposure resulted in a reduction in membrane receptor, identical to the CHO cells. These results suggested that for the mu-opioid receptor, alteration in receptor density was the major determinant for the observed agonist-induced desensitization. Consistent with this notion, the ratio of the DAMGO concentration yielding half-maximal occupation of the mu receptor to that yielding half-maximal functional response was < 1. This suggests the necessity for a high mu receptor occupancy rate for maximal functional response, so that any loss of cell surface opioid-binding sites was a critical determinant in reducing the maximal response. This hypothesis was further supported by the observation that irreversible inactivation of fixed proportions of opioid-binding sites with beta-chlorn-altrexamine demonstrated that there were few spare receptors, which is in contrast to what has been reported for other G protein-coupled receptors, including the delta-opioid receptor. Taken together, these data suggest that the opioid agonist DAMGO has a high affinity for the mu receptor but must occupy > 70% of the available receptors to generate the maximal second messenger-linked response.  相似文献   

17.
We recently reported the isolation and sequencing of sortilin, a new putative sorting receptor that binds receptor-associated protein (RAP). The luminal N-terminus of sortilin comprises a consensus sequence for cleavage by furin, R41WRR44, which precedes a truncation originally found in sortilin isolated from human brain. We now show that the truncation results from cellular processing. Sortilin is synthesized as a proform which, in late Golgi compartments, is converted to the mature receptor by furin-mediated cleavage of a 44 residue N-terminal propeptide. We further demonstrate that the propeptide exhibits pH-dependent high affinity binding to fully processed sortilin, that the binding is competed for by RAP and the newly discovered sortilin ligand neurotensin, and that prevention of propeptide cleavage essentially prevents binding of RAP and neurotensin. The findings evidence that the propeptide sterically hinders ligands from gaining access to overlapping binding sites in prosortilin, and that cleavage and release of the propeptide preconditions sortilin for full functional activity. Although proteolytic processing is involved in the maturation of several receptors, the described exposure of previously concealed ligand-binding sites after furin-mediated cleavage of propeptide represents a novel mechanism in receptor activation.  相似文献   

18.
Naloxone benzoylhydrazone (NalBzoH) is a potent mu antagonist in vivo. In a cell line stably transfected with MOR-1 (CHO/MOR-1), NalBzoH also was an antagonist when examined in adenylyl cyclase studies. In binding studies, it displayed high affinity for the mu receptor, confirming its earlier characterization in brain membranes. In competition studies under equilibrium conditions, NalBzoH and diprenorphine both retained their potency in the presence of the stable GTP analog 5'-guanylylimidophosphate, consistent with their mu antagonist properties, whereas the agonist DAMGO showed more than a 3-fold loss of affinity. The dissociation of 3H-diprenorphine was monophasic. However, kinetic studies revealed biphasic dissociations for both 3H-NalBzoH and 3H-DAMGO. The slow component of 3H-NalBzoH dissociation, corresponding to the higher affinity state, was dependent on coupling to G-proteins. It is selectively abolished by guanine nucleotides, leaving only the rapid dissociation phase. Furthermore, the slow dissociation component is eliminated by treatment of the cells with pertussis toxin, but not cholera toxin. In conclusion, NalBzoH is an unusual opioid. Functionally it is an antagonist, a classification consistent with its equilibrium binding in the presence of guanine nucleotides. Yet, kinetic studies reveal that it labels a G-protein coupled state of the receptor with high affinity.  相似文献   

19.
Substance P (SP) appears to mediate many processes of the central nervous system, including pain. This report deals with modulation of opioid binding in the mouse brain by SP and SP fragments, as well as by salts and guanine nucleotides. Binding studies of the selective mu opioid receptor agonist [D-Ala2, MePhe4,Gly(ol)5]enkephalin (DAMGO) to mouse brain membrane preparations demonstrated that guanine nucleotide modulation of DAMGO binding affinity was modified by SP. However, SP had little or no influence on inhibition of DAMGO binding induced by salts, such as MgCl2, CaCl2, or NaCl. By replacing GTP with GppNHp, SP (0.1 nM) produced multiple affinity forms of the DAMGO receptor, while at a higher concentration (10 nM), SP lost its influence on DAMGO binding. Furthermore, 0.1 nM SP changed DAMGO binding parameters in a medium containing NaCl, CaCl2, and GppNHp such that the high- and low-affinity conformations of the receptor converted to a single site following the addition of SP to the incubation medium. While the C-terminal SP fragment SP(5-11) was without effect, the N-terminal SP fragments SP(1-9) and SP(1-7) appeared to imitate SP in modifying GppNHp-modulated DAMGO binding. These results suggest that SP functions as a modulator of opioid binding at the mu receptor and it appears that the N-terminus of SP plays a role in the modulatory process.  相似文献   

20.
We recently reported that Fc mu R on NK cells is a signal transducing protein that stimulates a rapid increase in the level of cytoplasmic free calcium upon binding of IgM. This study was designed to examine signal transduction via the Fc mu R on NK cells and to characterize intracellular second messengers activated by IgM. Immunoprecipitation of IgM-bound Fc mu R by IgM-specific Ab coimmunoprecipitated the zeta- and Fc epsilon RI gamma-chains. Furthermore, engagement and clustering of Fc mu R by polyclonal IgM induced tyrosine phosphorylation of the zeta- and Fc epsilon RI gamma-chains, indicating their functional association with the Fc mu R-induced signal transduction cascade. Ligand-induced clustering of the Fc mu R also induced activity of src family kinases, Lck, Fyn, Lyn, and Src, as well as their physical interaction with the receptor. Triggering via Fc mu R also induced the activity of Syk and Zap-70, tyrosine kinases demonstrated to associate with zeta and Lck. Phospholipase C-gamma 1 and phosphatidylinositol 3-kinase were identified as substrates phosphorylated on tyrosine, as down-stream components of the signaling pathway activated in NK cells by polyclonal IgM. Although the Fc mu R on NK cells has not yet been biochemically characterized, our results suggest that the zeta- and Fc epsilon RI gamma-chains are functional subunits of this as well as other important cell surface receptors and that the Fc mu R is coupled either directly or indirectly to nonreceptor tyrosine kinases, which phosphorylate and thereby activate regulatory enzymes such as phospholipase C-gamma 1 and phosphatidylinositol 3-kinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号