首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
考虑了时变效应、轴承表面海水润滑膜温度场和两固体表面横向粗糙度等因素,对塑料轴承的弹流润滑问题进行研究.利用压力求解的顺解法及温度求解的逐列扫描技术,得到塑料轴承时变微观热弹流润滑问题的完全数值解.讨论了粗糙度函数幅值和波长及载荷、转速对于海水润滑膜压力及膜厚的影响.数值计算结果表明,粗糙度的几何参数对润滑性能有着不同程度的影响;随载荷的增大,压力增大,膜厚减小;转速对压力影响较小,随转速的增大,膜厚增大.  相似文献   

2.
渐开线斜齿圆柱齿轮的微观热弹流润滑分析   总被引:1,自引:0,他引:1  
假设两相互啮合渐开线斜齿轮表面具有连续余弦波状粗糙度,建立斜齿轮微观稳态热弹流模型,利用多重网格法求解压力分布和多重网格积分法求解弹性变形,讨论粗糙度幅值和波长对油膜压力、膜厚及油膜中层温度的影响。结果表明:粗糙表面不利于润滑膜的形成,考虑粗糙度的表面使膜厚、压力及温度分布均出现层状鼓层现象;随着波长的增大,油膜厚度、压力及温度波动幅度有所减小,而随着波幅的增大,膜厚、压力及温度曲线均明显波动。因此,在工程实际中,要尽量增大粗糙度波长,减小粗糙度波幅以实现平稳的机械传动。  相似文献   

3.
《机械传动》2016,(5):105-109
利用考虑惯性力的Reynolds方程,对水润滑飞龙滑动轴承进行流体润滑数值分析。探讨不同载荷、转速以及表面粗糙度对压力和膜厚的影响,并与不考虑流体惯性力的热弹流解进行对比。结果表明,考虑流体惯性力的影响时,入口区压力增大,压力峰值有所减小,中心膜厚与最小膜厚均增大;随着载荷的增大,压力峰值增大,入口区的压力和膜厚减小;随着转速的增大,压力峰值减小,入口区压力及润滑膜膜厚增大;轴承表面粗糙度使得压力和膜厚均出现了连续波动,压力峰值增大,最小膜厚减小。  相似文献   

4.
考虑轴承表面海水润滑膜温度场和轴承表面横向粗糙度等因素,对塑料轴承的弹流润滑问题进行了研究。利用压力求解的多重网格法和弹性变形求解的多重网格积分法以及温度求解的逐列扫描技术,得到塑料轴承微观热弹流润滑问题的完全数值解,讨论了连续波状粗糙度、载荷、轴承转速对海水润滑膜压力及膜厚的影响。数值计算结果表明:轴承表面粗糙度对润滑膜压力和膜厚分布都有一定影响,连续波状粗糙度使润滑膜压力和膜厚分布产生振荡;转速和载荷对压力分布影响较小,随转速的增大、载荷的减小,膜厚都有明显的增大。  相似文献   

5.
采用多重网格法和多重网格积分法对水基磁流体润滑轴承进行弹流润滑分析,在雷诺方程中考虑了热、非牛顿、磁场和时变的影响,探讨了粗糙度因素对弹流润滑性能的影响。分析中对比了轴-轴承双面和轴承单面带有正弦粗糙度时的润滑膜膜厚和压力的分布,并研究了双面都带有粗糙度相位不同时润滑膜压力和膜厚的分布。数值分析结果表明,两个表面都存在相同的粗糙度时,在波峰相对处的膜厚更小,压力更大,在波谷相对处的膜厚更大,压力更小;随着一个表面的粗糙峰远离另一个表面的粗糙峰时,膜厚和压力波动减小,润滑膜的最小膜厚逐渐增大,最大压力逐渐减小,直到润滑膜的粗糙峰与粗糙谷相对时,膜厚和压力不在波动,最小膜厚达到最大,最大压力达到最小。然后当这个表面粗糙峰再继续接近下一个表面粗糙峰时,膜厚和压力的波动增大,润滑膜的最小膜厚又开始减小,最大压力又增大,直到润滑膜的粗糙峰与粗糙峰相对时,膜厚和压力波动最大,最小膜厚达到最小,最大压力达到最大。  相似文献   

6.
《机械传动》2016,(1):119-123
建立了考虑表面织构的滑动轴承的弹流润滑几何模型,对考虑圆弧形凹坑、矩形凹坑和直角-三角形凹坑的水润滑飞龙轴承的弹流性能进行了数值分析。结果表明,压力与膜厚在凹坑处均出现波动,压力峰值和最小膜厚减小;滑滚比增大,最小膜厚减小,圆弧形凹坑的最小膜厚大于矩形凹坑的,远远大于直角-三角形凹坑的最小膜厚;随着轴承表面凹坑深度的增加,压力波动不明显;膜厚随着凹坑深度的增大,波动幅度增大,最小膜厚减小;直角三角形凹坑的轴承最不利于润滑。  相似文献   

7.
以轧机油膜轴承为研究对象,建立油水两相流的弹流润滑模型,利用多重网格法及Fortran程序分析表面波纹度对轧机油膜轴承润滑性能的影响。结果表明:表面波纹度对轧机油膜轴承润滑性能的影响不可忽略,并且是不利的;考虑波纹度后,接触中心区产生明显的波动现象,最大压力增大,最小膜厚减小,润滑性能减弱;随着表面波纹度幅值和波长的增加,接触区波动幅度更加显著;在一定范围内随着油水两相流体中含水量的增加,压力增大,膜厚增加,润滑能力增强。  相似文献   

8.
建立考虑固体颗粒的滑动轴承的无限长线接触几何模型,推导出含固体颗粒的Reynolds方程,考虑温度、固体颗粒以及表面粗糙度对轴承润滑的影响,通过数值方法分析不同颗粒位置、不同颗粒尺寸以及轴承表面粗糙度对压力和膜厚的影响,并与不含固体颗粒的热弹流解进行对比。结果表明:考虑热效应时,在固体颗粒处压力骤增;膜厚整体减小。随着固体颗粒位置向出口方向移动,在固体颗粒处压力波动幅度增大,膜厚整体减小;颗粒尺寸越大,膜厚越小;通过固体颗粒接触区后的压力随着相对间隙的减小而增大;同时考虑固体颗粒和粗糙度时,在固体颗粒处压力波动幅度增大,最小膜厚减小。  相似文献   

9.
建立角接触球轴承的热弹流润滑数学模型,通过求解考虑热效应的Reynolds方程,对润滑条件下的角接触球轴承在考虑表面粗糙度时的弹流润滑问题进行数值模拟。在缺乏实测数据的情况下,采用了涉及轴承滚道和滚球体面上的余弦粗糙波数学模型,分析考虑热效应的角接触球轴承的表面粗糙度对压力和膜厚的影响。结果表明:考虑x和y方向的粗糙度函数可以更好地模拟轴承滚道及滚球体表面的形貌特征,由此计算出的压力和油膜分布更贴近工程实际;考虑两方向的粗糙度后,压力和油膜分布与单方向粗糙度有所不同,增大粗糙度波长和减少波幅有利于减小压力,增大膜厚,改善润滑。  相似文献   

10.
朱晨  李冬龙  李倩梦  王睿 《轴承》2024,(5):121-130
为研究沟道表面纹理对轴承润滑性能的影响,建立了滚动轴承的热弹流润滑模型并与动态接触模型进行耦合分析,仿真结果表明该模型可以模拟角接触球轴承在不同表面下的润滑状态并直观反映其润滑特征的变化。通过对比横向、纵向和各向同性3种表面纹理发现:纵向纹理表面形成油膜的能力较好,平均膜厚和最小膜厚均高于光滑表面,且对表面压力、温度和应力的影响较小,相对于光滑表面可以明显改善润滑的效果;横向纹理和各向同性纹理会引起表面压力、温度和应力的剧增;另外,增大纹理波长或减小纹理幅值均会降低接触区压力,增大膜厚,减小温升,降低最大Von Mises应力,选择合适的纹理波长和幅值有利于提升轴承润滑性能。  相似文献   

11.
点接触润滑状态转化的实验观察   总被引:1,自引:0,他引:1  
利用球-盘接触润滑油膜厚度的光干涉测量法,通过卷吸速度或载荷的改变实验研究了弹性流体动力润滑与流体动力润滑转化过程中油膜厚度的变化规律。实验结果显示这2种润滑状态之间存在明显的过渡区。与已有的理论一致,在弹性流体动力润滑区和流体动力润滑区,油膜厚度与卷吸速度或载荷在对数坐标中呈直线关系。在两者的过渡区,固体表面的弹性变形量随卷吸速度或载荷的变化发生明显的变化,油膜厚度与速度或载荷的关系不再为对数坐标中简单的线性关系。使用已有的润滑状态区理论不能得到实验观测到的润滑状态的转化过渡区。  相似文献   

12.
非牛顿流体微观热弹流润滑理论   总被引:1,自引:0,他引:1  
求得了非牛顿流体线接触微观热弹流润滑的准稳态数值解。结果显示,横向微凸体能够造成强烈的局部动压,且微凸体越高或越窄,动压效应便越强。  相似文献   

13.
为研究乏油条件下偏心凸轮副的润滑状态,基于凸轮-挺杆机构建立时变乏油润滑模型,探究一个周期内6个典型瞬时(60°、120°、180°、240°、300°、360°)的压力和油膜厚度变化规律,并分析不同凸轮旋转角度下转速、初始载荷和润滑油黏度等参数对接触区润滑状态的影响。结果表明:当凸轮转至180°时,膜厚最小,压力最大,乏油状况最严重;限量供油下最小膜厚出现在凸轮转角为180°时,但是凸轮转角为0°时乏油速度最快,乏油程度更深;增大凸轮旋转速度时乏油速度更快,乏油程度更深;相同供油条件下,润滑油黏度越高使得接触区乏油情况越严重,乏油速度更快,乏油程度更深;载荷对接触区的润滑状态的影响较小,只在凸轮转角为0°接触区卷吸速度最大时,能够体现出载荷对接触区润滑状态的影响。  相似文献   

14.
利用双色光干涉润滑油膜测量技术,观察球-盘接触副内大黏度齿轮油润滑状态的转变过程,并对不同速度和载荷条件下润滑状态在不同区间内的转化进行定量分析。结果表明:在充分供油条件下,随卷吸速度增加,润滑油膜从弹流润滑状态向动压润滑状态转化,且2种润滑状态之间存在着明显过渡区间;而随着载荷的增加,润滑油膜从动压润滑向弹流润滑状态转化;在定量供油条件下,润滑油膜在弹流润滑区间内从富油润滑状态向乏油润滑状态转化。  相似文献   

15.
李昕 《一重技术》2006,(4):23-24
分析轧机的润滑方式,介绍各种润滑方式的特点,说明怎样合理地为板带轧机配套相应的润滑系统。  相似文献   

16.
过去20余年,薄膜润滑、纳米润滑、极端工况摩擦与润滑、生物润滑、绿色润滑、微量润滑等取得了重要进展。最近10余年,超滑、仿生润滑、智能润滑与监测,以及摩擦学测试技术和模拟仿真技术等研究飞速发展。微观研究已经成为润滑研究的主要手段,面向风力发电机、高铁、深空探测、深海探测、大飞机、超高速飞行器、新能源汽车等领域的润滑与密封和绿色近零排放润滑研究已经成为工业界关注的焦点。超滑作为润滑领域的新型颠覆性技术,逐步显示出其在工业生产和人类日常生活中的应用优势与勃勃发展生机。生物润滑包括人类器官中的摩擦与润滑和仿生学研究,在人类健康生活方面展示出重要作用。极端环境(高温、超低温、真空、高压等)摩擦与润滑,在卫星、火箭、舰艇、核电站及其他国防设施上用途广泛。而智能润滑等新兴领域发展,也将智能化应用到润滑领域,为设备的智能运行和制造提供了新的思路。在此,对润滑领域几个重要发展方向,如超滑、薄膜润滑、纳米润滑、极端工况摩擦与润滑、智能润滑、生物仿生学、绿色摩擦与润滑,以及摩擦学测试方法等方面进行回顾,介绍了国内外同行最新研究进展,并对未来进行了展望。  相似文献   

17.
An analytical model for full film lubrication of deep drawing is developed, combining the elastic–plastic membrane finite element code of deep drawing together with full film lubrication theory. In full film lubrication, the surfaces are not in contact, and the gap in between includes two types of lubrication: the thick film lubrication regime and the thin film lubrication regime. The film thickness and the strain distribution of full film lubrication are predicted here. The theoretical results show excellent agreement with the experiment data.  相似文献   

18.
纳米级混合润滑研究   总被引:7,自引:2,他引:7  
混合润滑是机械中广泛存在的润滑状态。从试验方面研究了由接触、边界润滑和薄膜润滑组成的点接触区混合润滑状态的特性,提出使用动态接触率来描述混合润滑状态,并研究了各种参数对动态接触率的影响。结果表明,在混合润滑状态下,动态接触率与接触中心平均膜厚成指数函数关系。速度和粘度的增大会减小动态接触率,载荷的增加则会增大接触率,极性添加剂分子的使用会减小实际粗糙峰之间的接触,从而降低动态接触率。另外,低速下,综合粗糙度小的摩擦副表面的接触率要大于粗糙度大的表面的接触率;随着卷吸速度的提高,粗糙度小的表面的动态接触率小于粗糙度大的表面的动态接触率。  相似文献   

19.
点接触乏油混合润滑的数值模拟研究   总被引:1,自引:0,他引:1  
基于改进的统一Reynolds方程,对点接触乏油混合润滑进行数值模拟,研究供油量、载荷、卷吸速度等对混合润滑性能的影响。分析时将润滑区域分为两部分,在压力区润滑油完全充满间隙,在空穴区润滑油部分充满间隙,这两区域的润滑特性都采用离散化的Reynolds方程求解;采用快速傅立叶变换算法求解弹性变形,采用GaussSeidal低松弛迭代逐行扫描法求解压力。结果表明:随着初始供油量的变化,润滑油油膜压力、油膜厚度以及部分油膜比例都会受到影响;速度对点接触乏油混合润滑的影响主要表现在油膜厚度分布上,而载荷的影响主要表现在压力分布上;随着载荷的升高,油膜压力将增大,而油膜厚度有轻微的减小,随着速度的升高润滑油油膜厚度减小。  相似文献   

20.
针对游梁式抽油机中轴、尾轴和曲柄销等四处承受交变重载低速轴承的问题及传统润滑保养方法存在旧脂残留、停机作业、高空安全隐患等缺陷,延长油田在一些采油厂200多口油井开展了集中润滑先导性试验,应用工程经济理论,从技术和经济角度系统介绍并分析了单线路、半自动和智能化等三种集中润滑技术在材料、结构、技术性能、经济性等方面的优缺点和适用性,并提出综合应用传统润滑和集中润滑技术的润滑方案。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号