首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
The seeds of the winged bean,Psophocarpus tetragonolobus L. were found to be rich in oil. The oil was examined for its iodine value, saponification value and fatty acid composition by gas liquid chromatography. The value (area percent) for fatty acids as methyl esters were: 14∶0 (0.2%); 16∶0 (9.1%); 16∶1 (0.4%); 18∶0 (5.4%); 18∶1 (41.0%); 18∶2 (29.5%); 18∶3 (1.9%); 20∶0 (2.0%); 20∶1 and 18∶4 together (2.2%); 22∶0 (7.3%) and 24∶0 (1.0%). The iodine value (Wij solution) was 91. The oil contains an appreciable amount of unsaturated fatty acids, especially linoleic 18∶2 (29.5%). The predominant saturated fatty acid is palmitic 16∶0 (9.1%).  相似文献   

2.
The fruits of two plants from Algeria (Quercus and Pistacia lentiscus) were investigated. The paper reports the chemical characteristics and the fatty acid composition of the oil extracts from the fruits. The black fruits of P. lentiscus has the highest crude fat of 32.8%, followed by the red fruits with 11.7%, and the lowest value of 9% in Quercus (acorn). The acid value was highest in red fruits of P. lentiscus oil (24.0 mg KOH/g), followed by the black fruits oil and lowest in acorn oil. The relatively high iodine value in the oils indicates the presence of many unsaturated bonds. Saponification value was highest in the Quercus ilex oil (166.7 mg KOH/g), while the lowest value was in the black fruits of P. lentiscus oil. Gas-liquid chromatography revealed that the three dominant fatty acids found are: palmitic C16:0 (16.3–19.5%), oleic C18:1 (55.3–64.9%), linoleic C18:2 (17.6–28.4%). The oils contain an appreciable amount of unsaturated fatty acids (78.8–83.5%).  相似文献   

3.
The China-chestnuts (Sterculia monosperma, Ventenat) were examined for their fatty acid composition by gas liquid chromatography, infrared and nuclear magnetic resonance spectroscopy. The oil in nuts contained cyclopropene fatty acids (CPFA) determined as silver nitrate derivatives of their esters. The values (area %) for the major fatty acids as methyl esters were 23.47% C16:0, 1.25% C16:1, 2.56% C18:0, 24.89% C18:1, 18.24% C18:2, 5.40% dihydrosterculic, 3.21% C18:3 + C20:0 and 19.15% sterculic. The proportion of CPFA in the oil did not decrease upon cooking the nuts.  相似文献   

4.
The physicochemical properties of seed and seed oil obtained from the native black mulberry (Morus nigra L.) were investigated in 2008 and 2009. The results showed that the seed consisted of 27.5–33% crude oil, 20.2–22.5% crude protein, 3.5–6% ash, 42.4–46.6% carbohydrate and 112.2–152.0 mg total phenolics/100 g. Twenty different fatty acids were determined, with the percentages varying from 0.02% myristic acid (C14:0) to 78.7% linoleic acid (C18:2). According to the GC analysis of fatty acid methyl esters, linoleic acid (C18:2), followed by palmitic acid (C16:0), oleic acid (C18:1) and stearic acid (C18:0) were the major fatty acids, which together comprised approximately 97% of the total identified fatty acids. High C18:2 content (average 73.7%) proved that the black mulberry seed oil is a good source of the essential fatty acid, linoleic acid. Linolenic acid (C18:3) was also found in a relatively lower amount (0.3–0.5%). The α-tocopherol content was found to be between 0.17 and 0.20 mg in 100 g seed oil. The main sterols in the mulberry seed oil were β-sitosterol, Δ5-avenasterol, Δ5, 23-stigmastadienol, clerosterol, sitosterol and Δ5, 24-stigmastadienol. The present study stated that the native black mulberry seed oil can be used as a nutritional dietary substance and has great usage potential.  相似文献   

5.
A preliminary investigation of the bulk properties of the oil from the edible mophane caterpillar (phane), Imbrasia belina, showed a significant difference in the iodine values of the oils from mature and young phane. Detailed analysis of the fatty acid composition of the two oil samples was thus carried out by capillary gas chromatography (GC) and complemented with 1H and 13C nuclear magnetic resonance (NMR) studies to investigate the degree of unstauration in the two oil samples. While these studies showed that the oil samples from the mature and young mophane caterpillar were much the same in fatty acid composition, the data revealed a significant divergence from a literature report on phane oil. This earlier report puts the ratio of total saturated to total unsaturated fatty acids at approximately 1:1 (48.2:48.8, in percentages) and estimates the fatty acid composition for the major fatty acids as 16:0 (31.9%), 18:0 (15.2%), 18:1 (20.4%), 18:2 (9.9%), and 18:3 (19%). The data collected from the present work, however, showed the fatty acid composition for total saturated and total unsaturated fatty acids to be 40.5 and 57.0%, respectively. This work estimated the fatty acid composition for the major fatty acids as 16:0 (27.2%), 18:0 (12.3%), 18:1 (16.1%), 18.2 (10.7%), and 18:3 (29.0%). Thus, linolenic acid was the most abundant fatty acid in the phane oil. The GC results of the present analysis were largely corroborated by studies of the composition of fatty acid classes in the phane oil estimated from integrals of 1H and 13C NMR signals. Oils from other edible Lepidoptera larvae are also known to be much richer in unsaturated than saturated fatty acids.  相似文献   

6.
Electrochemical hydrogenation employing a mediator of formate/formic acid resulted in partial hydrogenation of vegetable and soybean oil at 20–40 °C and ambient pressure when palladium supported on alumina was employed as a catalyst. An oleic acid content of 48% with a corresponding iodine value of 81 for the vegetable oil hydrogenated at 20 °C was obtained. The total trans fatty acid content and especially the 18:1 trans fatty acid were found to increase with the reaction temperature and time. Nonetheless, relatively low total trans and 18:1 trans fatty acid (7 and 3.8%, respectively) contents were found when the vegetable oil was partially hydrogenated to achieve an iodine value of 112.  相似文献   

7.
The proximate, physicochemical, and fatty acid compositions of seed oil extracted from khat (Catha edulis) were determined. The oil, moisture, crude protein, crude fiber, crude carbohydrate, and ash content in seeds were 35.54, 6.63, 24, 1.01, 30.4 %, and 1.32 g/100 g DW respectively. The free fatty acids, peroxide value, saponification value, and iodine value were 2.98 %, 12.65 meq O2/kg, 190.60 mg KOH/g, and 145 g/100 g oil, respectively. Linolenic acid (C18:3, 50.80 %) and oleic (C18:1, 16.96 %) along with palmitic acid (C16:0, 14.60 %) were the dominant fatty acids. The seed oil of khat can be used in industry for the preparation of liquid soaps and shampoos. Furthermore, high levels of unsaturated fatty acids make it an important source of nutrition especially as an animal product substitute for omega‐3 fatty acids owing to the high content of linolenic acid.  相似文献   

8.
Leaves from soybean (Glycine max (L.) Merr.) plants were assayed to determine if the relationship between temperature and relative fatty acid composition observed in the seed oil also existed for the triglycerides in the leaf oil. Leaf samples were harvested from eight soybean lines (A5, A6, C1640, Century, Maple Arrow, N78-2245, PI 123440 and PI 361088B) grown at 40/30,28/22 and 15/ 12°C day/night. At 40/30 and 28/22°C, seven fatty acids were observed at a level greater than 1.0%. These included the five major fatty acids found in the seed oil: palmitic (16:0), stearic (18:0), oleic (18:1), linoleic (18:2) and linolenic (18:3) acid; plus two fatty acids that had retention times the same as palmitoleic (16:1) and γ-linolenic (18:3 g) acid. In addition, an eighth fatty acid that had a retention time the same as behenic (22:0) acid was found in the leaves of all lines at 15/12°C. Palmitic, palmitoleic and stearic acid content did not differ significantly over temperatures. The oleic and linoleic acid content were each highest at 15/12°C, while the γ-linolenic and the linolenic acid content were each highest at 40/30°C. The fatty acid composition of the triglyceride portion of the leaf oil did not display the same pattern over temperatures as that observed for seed oil.  相似文献   

9.
Oil from coffee silverskin (CS) is a potential source of fatty acids with promising applications in several industries. Thus, CS crude oil extraction processes were investigated for further enzymatic hydrolysis for fatty acids production. Firstly, Soxhlet (with 150 mL hexane for 8 hours at 70 °C) and ultrasound-assisted (three times in sequential with 50 mL of hexane for 30 min at 30 °C) extractions were carried out to extract CS oil (3.8% and 3.1%, respectively). The fatty acid profiles obtained by both extraction methods presented a similar composition, shows palmitic (16:0: 32.6–34.4%) and linoleic acids (18:2: 31.5–36.1%) as the main. Then, CS oil extracted by Soxhlet was used as the feedstock for fatty acids production by enzymatic hydrolysis using four commercial lipases. Among the lipases studied, Candida rugosa lipase (CRL) displayed a higher hydrolytic activity (1143.70 U g−1), with a maximum hydrolysis degree of 51.94% (acid value of the CS oil increased from 13.4 to 37.5 mg KOH g−1) after 180 min of reaction. Molecular docking analysis showed that interactions between the CRL active site (Ser209 and His449) and palmitic acid, the fatty acid of highest concentration in CS oil (≈35%), lead to higher hydrolytic activity. The integrated process developed is an advance in fatty acid production and valorization of coffee industry waste, since there is still a promising approach yet to be explored that aims at the utilization of residual CS oil.  相似文献   

10.
The fatty acid (FA) composition of 540 Tunisian virgin olive oil hybrids (VOO) were classified by principal component analysis (PCA). Pearson correlation between FA variables revealed an inverse association between C18:1 and C18:2; C18:1 and C16:0, while C16:0 and C16:1 were positively correlated. PCA yielded five significant PCs, which together account for 79.95% of the total variance; with PC1 contributing 36.84% of the total. Eigenvalue analysis revealed that PC1 was mainly attributed to C18:1, monounsaturated fatty acids (MUFA) and the ratios oleic/linoleic (O/L) and monounsaturated fatty acids/polyunsaturated fatty acids (MUFA/PUFA); PC2, by C16:0, saturated fatty acids (SFA) and the palmitic/linoleic ratio (P/L); PC3 by C18:2 and C22:0, PC4 by C18:0 and PC5, by C17:1. Then, PCA analysis indicated that in addition to C16:0, C18:0, C18:1, C17:1, and C22:0, MUFA, SFA and the ratios O/L, P/L and MUFA/PUFA were determined to be the main factors responsible for the olive oil hybrids discrimination.  相似文献   

11.
The influence of temperature during seed development on the fatty acid composition of oilseed rape (Brassica napus L.) was studied in one low-linolenic and one conventional canola cultivar. The cultivar Regent produces seed oil with ∼20% linoleic acid (C18:2) and ∼8% linolenic acid (C18:3), whereas Stellar is relatively high in C18:2 (∼25%) and low in C18:3 (∼2.5%). Both cultivars were grown in the field, and the fatty acid compositions of the seed oils were monitored throughout the period of seed development. In the field, the content of saturated (C16:0+C18:0) and monounsaturated (C18:1) fatty acids in the seed oil increased when seed developed under high temperatures. C18:3 levels were higher in seed harvested at sites with lower average daily temperatures. The low C18:3 trait of the cultivar Stellar was relatively stable over environments. Both temperature and duration of exposure to the temperature during seed development affected the fatty acid composition of the seed in a controlled environment study. Plants subjected to a high-temperature treatment (30/25°C day/night) for 40 d produced seed with the lowest C18:3 content and the highest levels of C16:0+C18:0 and C18:1. This was observed in both cultivars.  相似文献   

12.
The effects on fatty acid digestibility and milk fat composition of calcium soaps of palm oil fatty acids and of a 25% replacement of the Ca soaps by four different lecithins (raw, deoiled and deoiled/partially hydrolysed soy lecithin, raw canola lecithin) and soybean oil were investigated in six lactating cows each. The complete diets contained the lipid supplements at proportions of 30 g fatty acids/kg dry matter. Partial replacement of Ca soaps by soy or canola lecithins and soybean oil had small but significant effects on fatty acid digestion and utilisation, as well as the fatty acid profile in milk. Relative to Ca soaps alone, C 16:0 digestibility was slightly higher with lecithins, and percentage of conjugated linoleic acid and trans C 18:1 in milk fat increased while proportion of C 16:0 decreased. Deoiling of lecithins slightly reduced the effects on C 16:0 digestibility and excretion with milk. The influence of lecithin processing was higher than the differences between raw soy and raw canola lecithin. Nevertheless, most of the few effects observed may be related to the fatty acids supplied with the lecithins but, regarding C 18:1 trans‐11 and odd chain fatty acids, there is some evidence that lecithins impair rumen microbial activity less than soybean oil.  相似文献   

13.
Fatty acid compositions of crude melon seed oil from two different sources were compared. Melon seeds fromCitrullus vulgaris (syn.C. lanatus) contained phosphatidylcholine (PC), lysophosphatidylcholine (LPC) and phosphatidylserine (PS), whereas melon seeds fromCitrullus colocynthis contained only PC and LPC, but not PS. Analysis of the total lipids revealed that the major fatty acid of the oils was 18:2n-6.Citrullus vulgaris seed oil contained 71.3% andC. colocynthis contained 63.4% of 18:2n-6. The predominant fatty acids in theC. vulgaris PC were 18:2n-6 (32.2%), 18:1n-9 (26.4%) and 16:0 (22.2%), whereas theC. colocynthis PC contained 44.6% of 18:1n-9 as the major fatty acid. The level of monoenes in theC. colocynthis variety (46.2%) was different from theC. vulgaris (27.3%). The major fatty acid in the LPC was 18:1n-9 for both varieties. Notably, theC. colocynthis variety did not contain any PS. The major fatty acids in theC. vulgaris PS were 18:1n-9 (37.9%) and 18:2n-6 (33.7%). Of all the phospholipids, LPC contained the greatest amount of monoenes, 48.6–52.4%.  相似文献   

14.
The seed of Diplocyclos palmatus (L.) C. Jaffery contained 12% oil and 40% protein. The seed oil has iodine value of 171.5, saponification value of 208.3, peroxide value of 0.3 and acid value of 2.9. The fatty acid composition (wt.%) as determined by gas liquid chromatography (GLC) is: C16:0,23.0; C18:0, 5.0; C18:2, 27.5; and C18;3, 3.5.  相似文献   

15.
The effects of variations in laboratory processing on the quality of the seed oil of the buffalo gourd, Cucurbita foetidissima, were determined. Conditions found most effective were: triple refining at 65 C for 15 min using 16°Be and 20°Be NaOH at 80% of maximum and 20°Be NaOH at the maximum; bleaching at 105 C for 30 min by a mixture of activated bleaching earth (3%) and activated carbon (0.3%); and deodorization with 5% steam at 210 C for 120 min. Processed oil showed these analytical values: carotenoids (3.6 mg/kg), free fatty acids (0.28%), peroxide (0.2 meq/kg), conjugated unsaturated fatty acids (1.59%). Oxidative stability test (AOM) conditions gave peroxide values of 100 in 4.9 hr and 141 in 8 hr. The triglyceride fatty acid composition was 11.9% palmitic, 3.5% stearic, 22.0% oleic and 61.0% linoleic acid.  相似文献   

16.
Shiv K. Berry 《Lipids》1980,15(6):452-455
The aril and seeds of the fruit Durian (Durio zibethinus, Murr.) were examined for their protein content and fatty acid composition by gas liquid chromatography (GLC). The values (area percentage) for fatty acids as methyl esters were: aril=14∶0 (0.91%); 16∶0 (34.13%); 16∶1 (7.10%); 18∶0 (1.21%); 18∶1 (42.14%); 18∶2 (7.85%) and 18∶3 plus 20∶0 (5.69%), Seeds=14∶0 (0.12%); 16∶0 (12.20%); 16∶1 (1.15%); 18∶0 (1.42%); 18∶1 (8.42%); 18∶2 (6.50%); dihydrosterculic acid (2.52%); 18∶3 plus 20∶0 (11.30%); malvalic acid (15.72%); sterculic acid (38.53%) and 22∶0 (1.21%). The germ oil contained the highest amount of sterculic acid. The cooking temperatures employed reduced the malvalic and sterculic acid contents in seeds only by ca. 22% and 19%, respectively.  相似文献   

17.
Although blending polyunsaturated oil with more saturated or monounsaturated oils has been studied extensively, there is no similar information regarding the partial replacement of palm olein with olive oil (OO). Therefore the main objective of this study was to investigate the effects of OO partial replacement (0, 25, 50, 75, 90 and 100% w/w) on the chemical stability of palm olein oil (POO). The physicochemical properties of oil samples namely iodine value, peroxide value (PV), anisidine value, TOTOX value (total oxidation value, TV), free fatty acid (FFA), cloud point, color and viscosity were considered as response variables. Significant differences among the oil blend properties were determined at the significance level of P < 0.05. Apart from FFA, all the response variables were significantly influenced by type and concentration of oils. The oil blend containing 10% POO and 90% OO showed the highest TV (6.10); whereas the blend containing 90% POO and 10% OO exhibited the least TV (2.41). This study indicated that the chemical stability of oil blend significantly (P < 0.05) increased with increasing the proportion of polyunsaturated/monounsaturated fatty acid.  相似文献   

18.
An aqueous-enzymatic extraction process of plum kernel oil was investigated on a laboratory scale, varying several processing parameters, with main emphasis on the oil yield. Efficient recovery of oil was related to three operations: pretreatment, enzymatic reaction and separation of oil. Maximum oil yield of about 70% (estimated by the Soxhlet method) was obtained at an enzyme concentration of 0.5%, extraction temperature of 45°C, pH 4.5, treatment time of 1 h and dilution ratio of 1:4. The aqueous-enzymatic extraction did not have any determining effect on the fatty acid composition, tocopherol composition, iodine value and saponification value. The free fatty acid content was higher, while the phosphatide content and peroxide value were lower in the oil extracted by the aqueous-enzymatic process as compared to the Soxhlet extracted samples.  相似文献   

19.
The cell growth and lipid accumulation process of Cryptococcus albidus were investigated using acetic acid as the sole carbon source at different concentrations. C. albidus showed high tolerance to acetic acid at a high concentration of 30 g L?1. The highest lipid content (32.69 ± 0.50 %) and lipid yield (0.96 ± 0.05 g L?1) were both obtained in the medium with an initial acetic acid concentration of 30 g L?1 on day five. Interestingly, the maximum lipid content and lipid yield was obtained on a different day in a medium with different acetic acid concentration. The fatty acid composition of the lipids accumulated by C. albidus was 16–23 % palmitic acid (C16:0), 3–5 % linolenic acid (C18:3), 42–51 % linoleic acid (C18:2) and 23–27 % oleic acid (C18:1), which was similar to that of soybean oil; thus, this microbial oil has great potential value as a renewable biodiesel feedstock. This work also provides valuable information for further research to use cheap substrates containing a high concentration of acetic acid (such as lignocellulosic hydrolysates), which is an economical and environmentally friendly form of microbial oil production.  相似文献   

20.
The objective of this study was to demonstrate that changing the fatty acid composition of bovine adipose tissue concurrently changed (i) proportions of triacylglycerol species, (ii) fatty acid composition of triacylglycerol species, and (iii) positional distribution of the component fatty acids of the triacylglycerol species. To achieve this, we took advantage of adipose tissue lipids, from cattle fed in Australia and Japan, that varied widely in fatty acid composition and melting points. Treatment groups produced in Australia were cattle fed: a cornbased diet (MUFA1); a grain-based diet containing whole cottonseed (SFA); a grain-based diet containing protected cottonseed oil (PUFA); and a grain-based diet that resulted in high contents of trans fatty acids (TFA). Treatment groups produced in Japan (MUFA2 and MUFA3) were diets of unknown composition fed for over 300 d. The MUFA1, MUFA2, and MUFA3 samples all were rich in monounsaturated fatty acids, varying only in the proportions of the individual monounsaturates. The SFA, PUFA, and TFA samples had relatively high concentrations of stearic acid (18:0), PUFA, and TFA, respectively. Slip points (indicative of melting points) were 45.1, 41.5, 38.5, 30.7, 28.4, and 22.8°C, for the SFA, TFA, PUFA, MUFA1, MUFA2, and MUFA3 groups, respectively (P<0.05). Triacylglycerols were separated by high-performance liquid chromatography on a silver nitrate-impregnated column into sn-1,2,3-saturated fatty acid triacylglycerol (SSS); [triacylglycerols containing two saturated acids and one trans-monounsaturated fatty acid (SSMt sn-positions unknown)]; sn-1-saturated, 2-monounsaturated, 3-saturated triacylglycerol (SMS); sn-1-saturated, 2-monounsaturated, 3-trans-monounsaturated triacylglycerol (SMMt); sn-1-saturated, 2,3-monounsaturated fatty acid triacylglycerol (SMM); sn-1-saturated, 2-polyunsaturated, 3-trans-monounsaturated triacylglycerol; sn-1,2,3-monounsaturated fatty acid triacylglycerol (MMM); and sn-1-saturated, 2-polyunsaturated, 3-monounsaturated triacylglycerol. Fatty acid methyl esters of each triacylglycerol species also were determined, and further analysis indicated sn-2, and sn-1/3 positions. As the percentage oleic acid increased in the total lipid extract, the proportions of SMM and MMM increased (e.g., from 31.4 and 2.4% in the SFA group to 55.4 and 17.8% in the MUFA3 group). The elevated 18:0 in the SFA group (26%) was reflected in increased percentages of SSS and SSM, and caused an increase in the proportion of 18:0 in all triacylglycerol species relative to the other treatment groups. The percentage of 18:0 in the sn-1/3 positions was elevated markedly in the SMS fraction of the SFA group (to 44%); this would account for the high melting point of the fat of these animals. We conclude that long-term feeding of cattle is sufficient to produce significant alterations in fatty acid composition in bovine adipose tissue. Alterations in the fatty acid composition of bovine adipose tissue changed both the distribution and the composition of the triacylglycerol species, which, in turn, accounted for marked differences in melting points among treatment groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号