首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
以柠檬酸为主要浸出剂,在室温下合成柠檬酸铅前躯体,将其低温焙烧生成超细Pb0/Pb粉末。结果表明:废旧铅蓄电池铅膏的主要成分PbO2、Pb0和PbSO4都能生成柠檬酸铅,铅回收率均在98%以上,为废旧铅酸电池的回收技术提供了一种新的思路。  相似文献   

2.
通过电渣重熔-雾化制粉技术制备得到低氧、超细高速钢粉末,采用无包套-热等静压技术制备得到高性能粉末高速钢。研究了不同粒度、不同氧含量高速钢粉末对烧结特性的影响,对组织和性能进行了测试和分析。结果表明,高速钢粉末的平均粒度小于12 μm,氧含量小于100 ppm,烧结致密化后组织均匀、碳化物细小,经热处理后抗弯强度达4200 MPa,冲击功达22 J,硬度达65 HRC。  相似文献   

3.
《中国铅锌锡锑》2010,(5):65-66
山西吉天利科技实业有限公司“10万吨废铅酸蓄电池无害化处理及综合利用项目”的设备采购国际招标落下帷幕,意大利梅洛尼设计工程贸易公司成功中标。  相似文献   

4.
废铅酸蓄电池回收利用技术应用进展   总被引:1,自引:0,他引:1  
本文介绍了湿法冶金技术,并阐述了近年来废铅酸蓄电池回收利用技术的最新进展,包括铅蓄电池的拆解、预处理和重金属铅回收技术,并结合实际应用情况,对目前废铅酸蓄电池的回收利用技术前景进行了展望.  相似文献   

5.
以ITO废靶为原料,硫酸浸出,均相共沉淀一共沸蒸馏法制备出了均匀分散、粒径小于100nm的类球状高纯纳米级ITO粉体。用本工艺制备回收超细ITO粉末,制备工艺简单,设备投资小,可适用于工业化生产。  相似文献   

6.
用机械合金化制备超细WC-Co-Cr_3C_2复合粉末   总被引:6,自引:0,他引:6  
以工业WC粉、Co粉和Cr3C2粉为原料,用行星式高能球磨机制备了WCCoCr3C2复合粉末。用X射线衍射、扫描电镜、光电子能谱等对粉末进行了分析。结果表明,球磨12h后复合粉末的粒度可达0.1μm左右,钴均匀分布且部分包覆在WC颗粒表面,处于亚固溶状态。  相似文献   

7.
采用电火花等离子体熔蚀装置在液相电介质中制备了超细铁粉末。并利用X射线衍射(XRD)、扫描电子显微镜(SEM)等测试手段对样品的表面形貌、物相、粒度分布进行了性能表征,并对粉末产量、电源参数进行了记录和分析。结果表明:制备的铁超细粉末粒度在5μm以下,绝大多数粉末粒度<1μm,粉末呈完好的球状,产量可高达70g/h,能源利用效率估算为12%。  相似文献   

8.
本文叙述了(CH_3)_3SiCl在激光场中分解后生成的S_1C超微粒的性质以及粉末性质随反应器压力、气体总流速、载气流速和激光平均能量等变化而改变的情况,对具有理想性能的SiC超微粒(直径≤0.03μm)的制备工艺条件选择有参考价值。  相似文献   

9.
在对各种废铅蓄电池铅回收污染控制技术进行系统分析和评估的基础上,结合国际发展趋势和要求,提出了铅回收污染控制最佳可行技术,对于推进废铅蓄电池铅回收处置设施建设中技术选择、工程设计、工程施工、设施运营、监督管理等方面工作具有重要的指导意义。  相似文献   

10.
自由电弧法与等离子电弧法制备超细粉末对比研究   总被引:1,自引:0,他引:1  
采用自由电弧法和等离子电弧法分别制备超细SnO2粉末,利用X射线衍射(XRD),扫描电镜(SEM)及能谱分析(EDAX)测试手段对样品的物相、形貌、粒度等进行表征.结果发现:等离子电弧法制备出的粉末粒度较小,粒子均匀,大部分为球形,且杂质少;而自由电弧法制备的粉末粒度较大,且含有大量的C杂质.通过对粉末的形核长大机制进行分析讨论,发现温度、温度梯度、饱和度是形核长大的重要影响因素.等离子电弧法容易获得较高的温度及温度梯度,有助于粉末的形核长大,获得较高的形核率,易制得超细粉末.  相似文献   

11.
An innovative process was proposed for recovering lead from spent lead paste, and it produced less pollution and used less energy than the traditional process. First, lead dioxide in lead paste was reduced by glucose under hydrothermal conditions. The effects of the reaction time, glucose excess coefficient, temperature and pH on the hydrothermal reduction were systematically investigated. Under the optimized reduction conditions (i.e., temperature of 175 °C, time of 120 min, glucose excess coefficient of 3.0 and pH of 5.5), 99.9% reduction ratio of lead dioxide is achieved, and only the PbO·PbSO4 and PbSO4 phases are observed in the reducing residue. Subsequently, the reducing residue is desulfurized in a NaOH solution, and approximately 99.40% of the sulfur is removed. The main lead phase in the desulfurization residue is 3PbO·H2O.  相似文献   

12.
为有效提取铅冶炼副产物中的铋,提出一种基于甲基磺酸体系的湿法提铋新工艺.提铋工艺包括电精炼、氧化浸出和电沉积.通过单因素试验确定提取铋的最佳工艺条件.在最优工艺条件下,得到纯度为99.8%的铋板.采用循环伏安法和线性扫描伏安法研究电解精炼的阴极反应机理.结果表明,铅和铋的沉积及氢析出反应均为不可逆反应,且反应的控制步骤...  相似文献   

13.
开展富锰渣硫酸化焙烧-水浸选择性提取锰和锂的试验,采用XRD、TG-DSC和SEM-EDS详细分析锰和锂的提取机理。结果表明,在酸浓度为82%(质量分数)、酸矿质量比1.5:1、焙烧温度800℃和焙烧时间2 h时,Mn和Li的浸出率分别达到73.71%和73.28%。焙烧过程中,富锰渣首先与浓硫酸反应形成Mn SO4、MnSO4·H2O、Li2Mg(SO4)2、Al2(SO4)3和H4SiO4。随着焙烧温度的升高,H4SiO4和Al2(SO4)3依次分解,并形成莫来石和尖晶石相。莫来石的形成有利于降低Al和Si的浸出率而增加Li的浸出率;而尖晶石的形成则会降低Mn和Li的浸出率。  相似文献   

14.
The cathode materials of spent lithium-ion batteries (LIBs) were recovered via reductive roasting, Na2CO3 leaching, and ammonia leaching. The effects of roasting parameters, Na2CO3 leaching parameters, and ammonia leaching parameters on the leaching efficiencies of metals were explored. The results show that the mineral phase of spent LIBs is reconstructed during reductive roasting, and more than 99% of Li can be preferentially leached via Na2CO3 leaching. Ni (99.7%) and Co (99.9%) can be leached via one-step ammonia leaching, and Mn cannot be leached. Thus, good leaching selectivity is achieved. The kinetic study shows that the leaching of Ni and Co conforms to chemical reaction control.  相似文献   

15.
废锂离子电池中集流体与活性物质的分离   总被引:4,自引:1,他引:4  
针对废旧锂离子电池回收工艺中电极集流体的分离问题,根据集流体、活性物质、粘结剂的物理化学性质差异,对高温焙烧法、物理擦洗法和稀酸浸出-搅拌擦洗法分离集流体与活性物质进行研究。结果表明:高温焙烧与物理擦洗法都不能完全使集流体分离出来,而通过稀酸溶解-搅拌擦洗联合作用分离效果良好,在硫酸浓度为0.5 mol/L、固液比1:10、搅拌速度200 r/min、反应时间为40 min的条件下,可以实现正负极活性物质与集流体的分离,铝箔和铜箔可直接作为产品回收,只有极少部分进入浸出液,浸出渣用硫酸再浸,可以使钴、锂全部溶出,净化除杂后可回收钴和锂。  相似文献   

16.
The treatment of spent zinc-carbon batteries for the recovery of valuable metals followed by conversion to Mn−Zn ferrite has been conducted employing two-stage alkali and acid leaching and co-precipitation method. In the first stage, leaching process was carried out with 4 M NaOH, which resulted in a recovery of 63.4 %Zn and 0.1% Mn. Electrowinning of alkali leaching solution containing 12.75 g/L Zn at a current density of 0.2 A/cm2 produced Zn metal of 15 nm to 30 nm size and 99.9% purity. The second stage leaching of residue with 3 M H2SO4 and 6 vol.% H2O2 at a solid/liquid ratio of 1∶10 indicated the leaching efficiency of 98.0% Zn, 97.9% Mn and 55.2% Fe. The obtained leaching solution was finally adjusted to suitable mole ratios of Mn∶Zn∶Fe (1∶1∶4) by the addition of Zn and Fe sulfate salts followed by pH control to produce Mn−Zn ferrite powder. The characterization of the ferrite powder showed uniform nano-crystalline particles of about 20 nm size with spinel structure.  相似文献   

17.
The service life of lead-acid batteries is often limited by disintegration of the positive active mass structure. It is known that the latter depends on the phase composition, crystal morphology and paste density. In general, the electrode whose active mass is prepared from 4PbO·PbSO4 pastes (denoted by 4BSpas) has about 30% longer cycle lives than those obtained by 3PbO·PbSO4·H2O. Therefore, the initial capacity and cycle performance of lead dioxide electrodes prepared from 10, 30 and 50 wt.% 4BSsyn (chemically synthesized 4PbO·PbSO4) addition with regard to the amount of cementation leady oxide were examined. Lead oxide (denoted by cementation leady oxide) was prepared by the pulverization of sponge lead prepared from a cementation reaction under the conditions of 90°C and 1.0 wt%HCl solution. 4BSsyn crystals were chemically synthesized in 40.1 wt.%H2SO4 with \-PbO. Without 4BSsyn, crystals lead dioxide electrode has shown a higher initial capacity than any other 4BSsyn contents and cycle performance was the best although the initial capacity is relatively low for 50 wt.% 4BSsyn.  相似文献   

18.
研究由失效磷酸基抛光液直接制备纳米锥冰晶石新工艺。在反应温度为50℃,反应时间为40min,搅拌速度为200r/min,氢氧化钠用量为理论化学计量的1.0倍,氢氟酸添加量为理论化学计量的1.2倍,静置时间为1d的条件下,失效磷酸基抛光液中铝脱除率可达90%以上,锥冰晶石产率为抛光液处理质量的8%~10%。,锥冰晶石粒径在25nm~30nm。与传统失效磷酸基抛光液处理工艺比较,新工艺不仅使抛光液得到再生利用,而且容易获得纯度高的纳米锥冰晶石产品,具有良好的推广应用前景。  相似文献   

19.
A recycling process including separation of electrode materials by ultrasonic treatment, acid leaching, Fe-removing, precipitation of cobalt, nickel, manganese and lithium has been applied successfully to recycle spent lithium-ion batteries and to synthesize LiNi1/3Co1/3Mn1/3O2. When ultrasonic treatment with 2-nitroso-4-methylphenol(NMP) at 40 ℃ for 15 min, the electrode materials are separated completely. Above 99% of Co, Ni, Mn and Li, 95% of Fe in the separated electrodes are acid-leached in the optimized conditions of 2 mol/L H2SO4, 1:2 H2O2:H2SO4 (molar ratio), 70 ℃, 1:10 initial S:L ratio, and l h. 99.5% of Fe and less than 1% of Co, Ni, Mn in the leaching solution can be removed in the conditions of initial pH value 2.0-2.5 adjusted by adding 18% Na2CO3, 90 ℃ and stirring time 3 h. After adjusted to be equal by adding NiSO4, COSO4 and MnSO4 solution, 97.1% of Ni, Co, Mn in the Fe-removing surplus leaching solution can be recovered as Ni1/3Co1/3Mn1/3(OH)2. 94.5% of Li in the surplus filtrate after the deposition of Co, Ni and Mn can be recovered as LiECO3. The LiNi1/3Co1/3Mnl/3O2, prepared from the recovered compounds, is found to have good characteristics of the layered structure and elecrtochemical performance.  相似文献   

20.
Hydrazine sulfate was used as a reducing agent for the leaching of Li, Ni, Co and Mn from spent lithium-ion batteries. The effects of the reaction conditions on the leaching mechanism and kinetics were characterized and examined. 97% of the available Li, 96% of the available Ni, 95% of the available Co, and 86% of the available Mn are extracted under the following optimized conditions: sulfuric acid concentration of 2.0 mol/L, hydrazine sulfate dosage of 30 g/L, solid-to-liquid ratio of 50 g/L, temperature of 80 °C, and leaching time of 60 min. The activation energies of the leaching are determined to be 44.32, 59.37 and 55.62 kJ/mol for Li, Ni and Co, respectively. By performing X-ray diffraction and scanning electron microscopy in conjunction with energy dispersive X-ray spectroscopy, it is confirmed that the main phase in the leaching residue is MnO2. The results show that hydrazine sulfate is an effective reducing agent in the acid leaching process for spent lithium-ion batteries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号