首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
以商业生产的高纯纳米α-Al2O3粉(99.9%,质量分数)、分析纯Mg(NO3)2为原料,以两面顶压机高压烧结,制备了纯Al2O3陶瓷及微量MgO掺杂的Al2O3陶瓷,并进行了密度测试与显微结构分析.与常压烧结相比,高压烧结可显著降低高纯Al2O3陶瓷的烧结温度,提高传质速率,大幅度缩短烧结时间,达到快速、低温烧结的效果.与常压烧结明显不同,在高压烧结时,MgO对高纯AlO3陶瓷的烧结致密化几乎没有影响.在4.5GPa,100 ℃高压烧结30 min,制备的纯Al2O3陶瓷的相对密度为97.65%,微量MgO掺杂的Al2O3陶瓷的相对密度达97.93%、平均晶粒尺寸约为4 μm.  相似文献   

2.
多孔陶瓷载体氧化铝涂层的研究   总被引:1,自引:1,他引:0  
分别用纳米γ-Al2O3和SB粉制备了多孔陶瓷载体的Al2O3涂层。BET法测定了多孔陶瓷载体Al2O3涂层改性前后比表面积的变化。由SEM照片观察多孔陶瓷载体涂层改性前后表面和断面的形貌。结果表明,这两种方法对多孔陶瓷载体涂层改性均有效可行。  相似文献   

3.
利用直流脉冲氧化和交流电沉积,在铝基体表面制备了Al2O3/TiO2复合膜。探讨了Al2O3/TiO2复合膜的形成过程及制备过程的影响因素。通过电沉积在Al2O3/TiO2复合膜上掺杂金属离子来提高复合膜的光催化性能,并用制备的Al2O3/TiO2/M 复合膜光催化降解次甲基蓝。  相似文献   

4.
采用固相反应法制备了Al2O3掺杂的SrCo0.8Fe0.2O3-δ(SCFA)新型钙钛矿型混合导体材料.对材料进行的结构分析表明,Al3+离子进入SrCo0.8Fe0.2O3-δ(SCF)晶胞间隙位,降低了材料的氧非化学计量系数,并有效提高了材料的结构稳定性;对不同厚度的SCFA3[Al2O3掺杂量为3%(质量)]片式膜的氧渗透性能测定结果表明,SCFA3膜的氧渗透过程受到表面交换过程和体扩散过程的共同影响,其临界厚度约为131.5 μm;二氧化碳热分解(TDCD)耦合甲烷部分氧化(POM)膜反应过程(反应温度1173 K)表明,Al2O3掺杂的SrCo0.8Fe0.2O3-δ较SrCo0.4Fe0.2O3-δ (SCFZ) 具有更加优异的稳定性.  相似文献   

5.
考察了Pd/Al2O3、In/Al2O3和Co/Al2O3对甲烷选择性还原NO的催化活性。结果表明,采用浸渍法制备的Pd/Al2O3、In/Al2O3和Co/Al2O3三种催化剂,在有氧气氛下,用CH4作还原剂催化还原NO时,Pd/Al2O3催化剂的活性最佳,热稳定性好,在550 ℃,用CH4选择还原NO,Pd/Al2O3催化剂表现出较强的催化能力,NO的转化率达到100%。在高空速实验中,该催化剂亦表现出较高的活性,其活性顺序为Pd/Al2O3>In/Al2O3>Co/Al2O3。实验研究了助催化剂、氧含量以及空速对Pd/Al2O3催化剂活性的影响。  相似文献   

6.
Co-M/Al2O3上环己烷的选择性氧化研究   总被引:2,自引:1,他引:2  
采用溶胶-凝胶法制备了Co-M/Al2O3(M=Cu,Zn,Ni)催化剂。在没有任何有机溶剂或助剂的条件下,研究了以空气为氧化剂的环己烷选择性氧化。所制备四种催化剂的活性为Co-Ni/Al2O3 >Co/Al2O3 >Co-Zn/Al2O3 >Co-Cu/Al2O3。在Co-Ni/Al2O3中Co、Ni的质量分数分别为4.0%和3.0%时活性最好。以Co-Ni/Al2O3为催化剂,在4.5 MPa、443 K下反应120 min,环己烷转化率达9.9%,环己酮和环己醇的总选择性达94.6%,n(酮)∶n(醇)为2.8。Co-Ni/Al2O3催化剂连续使用五次后活性基本不变。  相似文献   

7.
以CuSO4·5H2O和MnSO4·H2O为前驱物,NaOH为沉淀剂,选用共沉淀工艺,添加Al2O3、BaO+Al2O3、ZrO2+Al2O3或CeO2+Al2O3粉末作为催化助剂,制备了4种铜锰氧化物水煤气高温变换催化剂。X射线衍射分析表明,4种铜锰氧化物催化剂的主要化学成分为氧化铜和氧化锰系化合物以及锰钡、铜锰和铜锰铝复合氧化物;在催化水煤气变换反应(WGSR)后,4种铜锰氧化物的化学成分发生了变化。H2还原实验结果表明,在4种铜锰氧化物中,添加ZrO2+Al2O3的铜锰氧化物H2还原效率最好;而添加CeO2+Al2O3的铜锰氧化物H2还原效率最小。对WGSR出口气中CO体积分数进行对比分析可知,分别添加Al2O3和CeO2+Al2O3铜锰氧化物催化剂的变换活性较好。  相似文献   

8.
氧化铈和铈锆固溶体对Pd催化剂抗硫性能影响的研究   总被引:1,自引:0,他引:1  
采用等体积浸渍法制备了质量分数为1%Pd/γ-Al2O3、1%Pd/10%CeO2/γ-Al2O3以及1% Pd/10%Ce0.6Zr0.4O2 /γ-Al2O3催化剂,研究了CeO2和Ce0.6Zr0.4O2 固溶体对Pd催化剂抗硫性能的影响。利用XRD和XPS技术表征了催化剂的固相结构、表面元素组成和反应后催化剂中硫物种(或表面硫酸盐)的存在形态。利用SO2-TPD研究了SO2在催化剂上的吸附和脱附行为。实验结果表明,在催化剂载体中引入CeO2和Ce0.6Zr0.4O2 降低了催化剂起燃活性;SO2 在Pd/Ce0.6Zr0.4O2 /γ-Al2O3催化剂表面上发生化学反应生成Zr(SO4)2,其热稳定性大于在Pd/γ-Al2O3和Pd/CeO2/γ-Al2O3催化剂表面上的硫酸盐或硫酸盐物种。  相似文献   

9.
固体超强酸催化剂S2O2-8/Fe2O3-Al2O3的制备及其酯化性能   总被引:2,自引:0,他引:2  
以硝酸铁为铁源、硝酸铝为铝源,通过共沉淀法制备固体超强酸催化剂S2O2-8/Fe2O3-Al2O3。通过催化剂样品的FT-IR谱图、不同焙烧温度催化剂样品的XRD谱图、不同陈化温度的N2吸附-脱附曲线以及催化剂样品的SEM照片,研究了其晶体的形成过程。催化剂样品红外谱图表明,催化剂中的S=O有较强的共价双键特征,诱导催化剂形成超强酸性;在XRD谱图中既无Al2O3的晶相峰,也无Fe2(SO4)3晶相峰,说明Al2O3与Fe2O3 在催化剂样品的表面形成了Al2O3-Fe2O3 共价键的复杂结构。采用BET方程和BJH模型计算催化剂样品的比表面积和孔径分布,经冰水陈化的催化剂样品平均孔径为9.1 nm,最可几孔径为7.5 nm,比表面积为78.9 m2·g-1,孔容0.149 cm3·g-1。研究了催化剂的铁与铝物质的量比、(NH4)2S2O8浸渍浓度和不同焙烧温度对硬脂酸正丁酯酯化率的影响。在反应温度85 ℃、催化剂用量0.2 g (为反应物总质量的2%)和回流反应150 min的条件下,酯化率可达84.5%。  相似文献   

10.
Ce1-xCuxO2-x/Al2O3催化剂的制备及其甲烷催化燃烧性能   总被引:3,自引:0,他引:3       下载免费PDF全文
以γ-Al2O3为载体,采用共浸渍法制备了负载型Ce1-xCuxO2-x/Al2O3催化剂(x=0~1)以及不同Ce0.2Cu0.8O1.2含量的Ce0.2Cu0.8O1.2/Al2O3催化剂,采用XRD、TPR等现代分析测试手段对催化剂的结构进行了表征,评价了催化剂的甲烷催化燃烧性能.结果表明,Ce1-xCuxO2-x/Al2O3催化剂中Ce和Cu的摩尔比显著影响催化剂的催化性能,在载体γ-Al2O3表面,Ce和Cu形成了固溶体,从而提高了Cu的分散性,改变了Ce和Cu的氧化还原性能,提高了催化剂的甲烷催化燃烧性能,并且Ce和Cu之间存在着协同作用.  相似文献   

11.
以Al2O3、ZrO2陶瓷粉体为溶质,以莰烯为溶剂,以Texaphor963作为添加剂,制备出低粘度高稳定性的陶瓷浆料,采用冷冻注模工艺制备出具有较高强度的陶瓷坯体,采用无压烧结工艺,得到了多孔Al2O3-ZrO2陶瓷制品,并对其微观结构进行了研究。  相似文献   

12.
To fabricate Al2O3 ceramic components with complex shape, selective laser sintering (SLS) combined with cold isostatic pressing (CIP) process was used to consolidate Al2O3 powder with additive of epoxy resin E06 (ER06) and polyvinyl alcohol (PVA). The starting material preparation combined spray drying with mechanical mixing to formulate compound powder consisting of PVA (1.5 wt%), ER06 (8 wt%) and Al2O3 and provide a good fluidity for SLS. Experimental investigations were carried the shrinkage, relative density, bending strength of Al2O3-ER06 SLS specimens in order to optimize the laser sintering parameters. It was found that Al2O3-ER06 SLS specimens represented acceptable shrinkage, high density and bending strength when laser power, scanning speed, scanning space and layer thickness were, respectively, 21 W, 1600 mm/s, 100 μm and 150 μm. Following that, the SLS specimens were processed through CIP to eliminate the pores in green ceramics. Finally, the optimized SLS/CIP Al2O3 specimens were debinded, sintered to produce crack-free Al2O3 bodies. The final Al2O3 components achieved a relative high density of more than 92% after furnace sintering. The study shows a novel and promising approach to fabricate complex ceramic matrix and ceramic components via indirect SLS and CIP process.  相似文献   

13.
《Ceramics International》2023,49(16):27192-27200
Improvements in the sintering process and powder quality can lead to wider application of zirconia in ceramics. In this study, the effects of different temperatures on the stability, relative content of the tetragonal phase, and composition of Al2O3–ZrO2 ceramic powders were explored using pressureless-assisted sintering. The crystallinity of the sintered Al2O3–ZrO2 samples was significantly improved. The content of the tetragonal-phase ZrO2 in sintered ceramic powders was 52.07%, 52.46%, 56.16%, 63.99%, and 64.90%, respectively, which was significantly higher than those of the raw materials. The average particle size of the sintered samples decreased from 1.07 μm to 0.17 μm with an increase in temperature, indicating that the ceramic powder particles were refined. The sample that was subjected to pressureless-assisted sintering at 1200 °C and held for 1 h exhibited the best stability and more uniform particle distribution compared to other samples. The particle size distribution data were closer to the standard line, satisfying the requirements of the normal distribution law. The results revealed that a high temperature was more favourable to the solid solution, and the formation of an Al2O3–ZrO2 solid solution can diminish the influence of the volume expansion of ceramic powders on the sample properties during sintering. Therefore, the addition of the sintering aid Al2O3 significantly promotes the densification of the powders, and the pressureless sintering technique reduces the sintering temperature of the solid solution, thus imparting a crystalline structure and excellent mechanical properties to the material.  相似文献   

14.
Al2O3/Cu (with 30 wt% of Cu) composites were prepared using a combined liquid infiltration and spark plasma sintering (SPS) method using pre-processed composite powders. Crystalline structures, morphology and physical/mechanical properties of the sintered composites were studied and compared with those obtained from similar composites prepared using a standard liquid infiltration process without any external pressure. Results showed that densities of the Al2O3/Cu composites prepared without applying pressure were quite low. Whereas the composites sintered using the SPS (with a high pressure during sintering in 10 min) showed dense structures, and Cu phases were homogenously infiltrated and dispersed with a network from inside the Al2O3 skeleton structures. Fracture toughness of Al2O3/Cu composites prepared without using external pressure (with a sintering time of 1.5 h) was 4.2 MPa m1/2, whereas that using the SPS process was 6.5 MPa m1/2. These toughness readings were increased by 18% and 82%, respectively, compared with that of pure alumina. Hardness, density and electrical resistivity of the samples prepared without pressure were 693 HV, 82.5% and 0.01 Ω m, whereas those using the SPS process were 842 HV, 99.1%, 0.002 Ω m, respectively. The enhancement in these properties using the SPS process are mainly due to the efficient pressurized infiltration of Cu phases into the network of Al2O3 skeleton structures, and also due to high intensity discharge plasma which produces fully densified composites in a short time.  相似文献   

15.
Preparation of 3YSZ/Al2O3-platelet composites always requires high temperature, long duration, and/or high pressure. Herein, 3YSZ/Al2O3-platelet composites are prepared at low temperature of 492°C-645°C in 30 seconds by flash sintering under the electric field of 300-800 V/cm. The influence of electric field and current limit on the densification and grain growth of composites is investigated. The onset temperature for flash sintering is determined by electric field, which is decreased with increasing the electric field. Under the constant electric field, the current limit has a great effect on the density and grain size of composite. The flash-sintered 3YSZ/Al2O3-platelet composites exhibit relatively high hardness and elastic modulus. Both Joule heating and defects generation are proposed to be responsible for the rapid densification in flash sintering. This work demonstrates the feasibility of employing the flash sintering to prepare ceramic composites with fine grain size.  相似文献   

16.
The die-pressed Al2O3-based ceramic compacts for microwave sintering were prepared using uniaxial molding pressure. Effect of molding pressure on density distribution, microstructure, and mechanical properties of both green and sintered compacts were studied by simulation and experiments. The results suggested that the density distribution of green compact showed obvious stratification phenomenon as the pressure increased. High pressure could increase the density of green compact but led to large density variation. Cracks were formed within the sintered compact due to the severe stress concentration at high molding pressure. Better mechanical properties were obtained at the pressure of 200-300°MPa. The optimal mechanical properties of Al2O3/Ti(C,N) ceramic tool were obtained at 1550°C with the soaking time of 10 minutes, which were as high as that of conventional sintering, but the sintering period was sharply shortened.  相似文献   

17.
Al2O3-based ceramic cores with a uniform microstructure were fabricated successfully by a traditional pressing forming method, in which Al2O3 powders were used as matrix and yttrium oxide as additive. The influences of yttrium oxide content and sintering temperature on properties of ceramic cores were studied carefully. Results indicated that a higher sintering temperature benefited the preparation of ceramic cores with excellent properties. As the temperature was above 1400°C, the reaction of Al2O3 and yttrium oxide occurred, leading to the formation of YAG phases. And, YAG was uniformly adhered on the surface of Al2O3 particles, exerting a good role in connecting Al2O3 particles. Based on XRD analyses, it was found that the increase in the sintering temperature could promote the formation of more YAG phases. When sintering temperature was adjusted to 1600°C, with the increase in the yttrium oxide content, their relative density developed a trend of decreasing first and then increasing, while the apparent porosity had an opposite change tendency. With the increase in the sintering temperature, the line shrinkage and bending strength of Al2O3-based ceramic cores both increased gradually. In our research, their bending strength reached to 53.5 MPa and apparent porosity was 33.9% when the ceramic cores were prepared with 9 wt% yttrium oxide at 1600°C.  相似文献   

18.
《Ceramics International》2023,49(6):8993-8999
The function of ceramic coating is closely related to the construction technology and the quality of ceramic powders. Generally, Al2O3–ZrO2 powders are rapidly sprayed on the material surface at high temperatures to obtain better performance. Improving the quality of Al2O3–ZrO2 powders can make them more widely used in ceramic coating. In this paper, microwave sintering was used to enhance the sintering process of the powders, and the effect of sintering time on the microstructure, properties, and stability of Al2O3–ZrO2 powders was investigated. The results proved that microwave heating could improve the crystallinity and stability of the samples. At 900 °C, the tetragonal phase content in samples with different sintering times were 63.05%, 63.25%, 62.39%, and 63.22%, respectively. The average particle sizes obtained by Gaussian fitting are 1.04 μm, 0.83 μm, 0.88 μm, 0.86 μm, respectively. The Gaussian fitting particle size data was consistent with the normal distribution. Compared with the particle size of raw material (1.10 μm), the particles were refined, and the dispersion effect was noticeable. Therefore, the best sintering time for microwave sintering Al2O3 stabilized zirconia was 2 h. This paper aims to provide reasonable data support for improving the preparation of high-quality Al2O3-PSZ ceramic powders and to guide the industrial production of Al2O3-PSZ powders.  相似文献   

19.
Fully dense ceramics with retarded grain growth can be attained effectively at relatively low temperatures using a high-pressure sintering method. However, there is a paucity of in-depth research on the densification mechanism, grain growth process, grain boundary characterization, and residual stress. Using a strong, reliable die made from a carbon-fiber-reinforced carbon (Cf/C) composite for spark plasma sintering, two kinds of commercially pure α-Al2O3 powders, with average particle sizes of 220 nm and 3 μm, were sintered at relatively low temperatures and under high pressures of up to 200 MPa. The sintering densification temperature and the starting threshold temperature of grain growth (Tsg) were determined by the applied pressure and the surface energy relative to grain size, as they were both observed to increase with grain size and to decrease with applied pressure. Densification with limited grain coarsening occurred under an applied pressure of 200 MPa at 1050 °C for the 220 nm Al2O3 powder and 1400 °C for the 3 μm Al2O3 powder. The grain boundary energy, residual stress, and dislocation density of the ceramics sintered under high pressure and low temperature were higher than those of the samples sintered without additional pressure. Plastic deformation occurring at the contact area of the adjacent particles was proved to be the dominant mechanism for sintering under high pressure, and a mathematical model based on the plasticity mechanics and close packing of equal spheres was established. Based on the mathematical model, the predicted relative density of an Al2O3 compact can reach ~80 % via the plastic deformation mechanism, which fits well with experimental observations. The densification kinetics were investigated from the sintering parameters, i.e., the holding temperature, dwell time, and applied pressure. Diffusion, grain boundary sliding, and dislocation motion were assistant mechanisms in the final stage of sintering, as indicated by the stress exponent and the microstructural evolution. During the sintering of the 220 nm alumina at 1125 °C and 100 MPa, the deformation tends to increase defects and vacancies generation, both of which accelerate lattice diffusion and thus enhance grain growth.  相似文献   

20.
Pulsed electric current sintering (PECS) was applied to obtain transparent ruby polycrystals. Al2O3-Cr2O3 powder mixture was prepared by drying an aqueous slurry consisting of Al2O3 and Cr(NO3)3 followed by PECS consolidation in vacuum at a sintering temperatures ranging from 1100 to 1300 °C with various heating rates between 2 and 100 °C/min and under an applied pressures from 40 to 100 MPa. Slow heating rate and high-pressure lead to highly densified and transparent Cr-doped Al2O3 polycrystals at sintering temperature of 1200 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号