首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It has been previously reported that the remnant polarization of 0.65Pb(Mg1/3Nb2/3)O3-0.35PbTiO3 (PMNT) thin films on Si-based substrates is much lower than that of bulk ceramics with the same composition, which is a problem for its integration in microdevices. The preparation of multilayer composites of PMNT and PbTiO3 layers, which maintain large remnant polarization values even for the thinnest films, is explored in this work as an alternative for obtaining PMNT-based films with enhanced remanence. The multilayer composite thin films were fabricated onto Pt/TiO2/SiO2/Si (100) substrates by Chemical Solution Deposition. The deposited layers are ultrathin and the results show that there is no significant interdiffusion among them. Although the typical constraints related to the small grain size found in ultrathin layers and the associated lack of ferroelastic domains are present, the results show an improvement of the remanence of the PMNT layer in the multilayer composite film and that these composites can be good candidates for the integration of PMNT in devices.  相似文献   

2.
K. BiZ.L. He  Y.G. Wang 《Thin solid films》2012,520(17):5575-5578
Magnetoelectric (ME) Ni/Pb(Zr0.52Ti0.48)O3 bilayers have been prepared by hydrothermal method. The structure and ferroelectric properties of the Pb(Zr0.52Ti0.48)O3 (PZT) thin films prepared at various hydrothermal temperatures are characterized by X-ray diffraction and ferroelectric testing. With the hydrothermal temperature increasing the grain size of the PZT thin films gradually decreases leading to a gradual increase of the coercive field and a decrease of the remnant polarization of the Ni/PZT bilayers. The ME voltage coefficient of the Ni/PZT bilayers gradually decreases as hydrothermal temperature increases. The large ME coefficient makes these Ni/PZT bilayers possible for applications in multifunctional devices such as electromagnetic sensor, transducers and microwave devices.  相似文献   

3.
Various crystallization parameters were studied during the fabrication of Bi3.15Nd0.85Ti3O12 (BNdT) thin films on Pt/Ti/SiO2/Si (100) by metal organic solution decomposition method. The effect of crystallization processes, crystallization ambients on the properties of BNdT thin films such as orientation, ferroelectric properties were examined. By adopting different fabrication processes, it is possible to get both highly c-axis oriented as well as randomly oriented thin films. Highly c-axis oriented BNdT thin film showed a large remnant polarization (2Pr) of 70 μC/cm2 at an applied voltage of 10 V and exhibited a fatigue free behavior unto 2 × 109 switching cycles. The improved ferroelectric properties of BNdT thin films suggest their suitability for high density ferroelectric random access memory applications.  相似文献   

4.
To develop high-performance piezoelectric films on conventional Pt(111)/Ti/SiO2/Si(100) substrates, sol-gel-derived highly [100]-textured Nb-doped Pb(ZrxTi1 − x)O3 (PNZT) thin films with different Zr/Ti ratios ranging from 20/80 to 80/20 were prepared and characterized. The phase structure, ferroelectric and piezoelectric properties of the PZNT films were investigated as a function of Zr/Ti ratios, and it was confirmed that there was distinct phase transition of the PNZT system from tetragonal to rhombohedral when the Zr/Ti ratio varied across the morphotropic phase boundary (MPB). The Nb-doped PZT films showed enhanced remanent polarization but reduced coercive field, whose best values reached 75 μC/cm2 and 82 kV/cm, respectively at the composition close to MPB. In addition, the [100]-textured PNZT film at MPB also shows a high piezoelectric coefficient up to 161 pm/V. All these properties are superior to those for undoped PZT films.  相似文献   

5.
The ferroelectric thin films of Fe-doped BaTiO3 and undoped BaTiO3 were prepared on LaNiO3 coating Si substrates by sol–gel technique. It was found that a small amount of Fe dopant could significantly enhance the ferroelectric properties of the BaTiO3 thin film. The remnant polarization of Fe-doped BaTiO3 thin film at room temperature reached to 14.9 μC/cm2. The loss tangent, compared to the undoped BaTiO3 film, was increased with frequency increasing and the dielectric constant was decreased. The possible mechanism of enhanced ferroelectric properties of Fe-doped BaTiO3 thin film was discussed. The results show the potential role of Fe dopant in improving the ferroelectric properties of BaTiO3 thin film.  相似文献   

6.
Relaxor 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 (70/30 PMN-PT) and 0.9Pb(Mg1/3Nb2/3)O3-0.1PbTiO3 (90/10 PMN-PT) thin films have been grown by RF-sputtering on platinum (Pt) and lanthanum nickelate (LaNiO3) bottom electrodes. For both electrodes, macroscopic measurements evidence lower coercive fields, remnant polarizations and piezoelectric coefficients d33 for 90/10 PMN-PT films compared to 70/30 PMN-PT films. For both compositions, coercive fields and remnant polarizations are lower for films grown on LaNiO3 compared to on Pt while piezoelectric coefficients d33 are higher. For each electrode and composition, a similar behavior is revealed for electromechanical activity at the nanoscale when measuring local piezoelectric hysteresis loops; on the other hand, the voltages required for switching the domains are the highest for 90/10 PMN-PT films grown on LaNiO3. The existence of large grain boundaries in the films grown on Pt and the presence of local random fields with polar nano-domains for the 90/10 composition could explain the differences measured in domains switching properties at the macroscale and nanoscale levels.  相似文献   

7.
Effects of annealing temperature (600-800 °C) on microstructure, ferroelectric and piezoelectric properties of Bi3.15Dy0.85Ti3O12 (BDT) thin films prepared by metal-organic decomposition were studied. The remnant polarization 2Pr and spontaneous polarization 2Ps (16.2 µC/cm2 and 23.3 µC/cm2 under 690 kV/cm), effective piezoelectric coefficient d33 (63 pm/V under the bipolar driving field of 310 kV/cm) of BDT thin film annealed at 700 °C are better than those of others. The higher 2Ps and relatively permittivity εr induced by moderate annealing temperature should be responsible for the enhancement of piezoelectric properties. The improved d33 may make BDT a promising candidate for piezoelectric thin film devices.  相似文献   

8.
Bi3.25Eu0.75Ti3O12 (BET) thin films were deposited on Pt/Ti/SiO2/Si(111) substrates by a metal-organic decomposition method. The effects of annealing temperatures 600-800 °C on microstructure, ferroelectric, dielectric and piezoelectric properties of BET thin films were studied in detail. The spontaneous polarization (87.4 × 10− 6 C/cm2 under 300 kV/cm), remnant polarization (65.7 × 10− 6 C/cm2 under 300 kV/cm), the dielectric constant (992.9 at 100 kHz) and the effective piezoelectric coefficient d33 (67.3 pm/V under 260 kV/cm) of BET thin film annealed at 700 °C are better than those of the others. The mechanisms concerning the dependence of the enhancement d33 are discussed according to the phenomenological equation, and the improved piezoelectric performance could make the BET thin film a promising candidate for piezoelectric thin film devices.  相似文献   

9.
As the introduction of piezoelectric materials into micro electromechanical systems increases, there is a correlating requirement for understanding the mechanical properties of these films. We have investigated the mechanical properties of unpoled PZT [Pb(Zr,Ti)O3] and PMNT [Pb(Mg1/3Nb2/3)1−xTixO3] thin films deposited by sputtering. In this study, nano-indentation, a technique which allows determination of the transverse mechanical properties, is used. It is the easiest method for assessing the biaxial elastic modulus and the hardness of thin films. It was confirmed that neither cracks, nor pile-ups, were observed for indentation depths below 20% of the film's thickness.The continuous stiffness method was used and allowed us to demonstrate that the indentation modulus decreases continuously with increasing grain diameter. This can be explained by the orientation changes of the crystallites with increasing grain diameter. The indentation modulus measured under load, or at almost null load (that is when the ferroelectric domains are or are not oriented by the stress) are coherent with those determined by the same method with a hard bulk ceramic. These results tend to show that the compliance Cij of the hard bulk ceramic can possibly be used with sputtered thin films. The hardness is almost independent of the grain diameter (Hb ≅ 7.5 ± 0.9 GPa) and higher than that for the bulk PZT ceramics considered in this study. PMNT and PZT films have appreciably the same mechanical characteristics. No influence of the film thickness was found on the values of both of these parameters.  相似文献   

10.
0.68PbMg1/3Nb2/3O3-0.32PbTiO3 (PMN-PT) thin films with a lead zirconate titanate Pb(Zr0.3Ti0.7)O3 (PZT)/PbOx buffer layer were deposited on Pt/TiO2/SiO2/Si substrates by radio frequency magnetron sputtering technique, and pure perovskite crystalline phase with highly (100)-preferred orientation was formed in the ferroelectric films. We found that the highly (100)-oriented thin films possess not only excellent dielectric and ferroelectric properties but also a large electrocaloric effect (13.4 K at 15 V, i.e., 0.89 K/V) which is attributed to the large electric field-induced polarization and entropy change during the ferroelectric-paraelectric phase transition. The experimental results indicate that the use of PZT/PbOx buffer layer can induce the crystal orientation and phase purity of the PMN-PT thin films, and consequently enhance their electrical properties.  相似文献   

11.
Lead-free piezoelectric thin films of NaNbO3-BaTiO3 were fabricated on Pt/TiOx/SiO2/Si substrates by chemical solution deposition. Perovskite NaNbO3-BaTiO3 single-phase thin films with improved leakage-current and ferroelectric properties were prepared at 650 °C by doping with a small amount of Mn. The 1.0 and 3.0 mol% Mn-doped 0.95NaNbO3-0.05BaTiO3 thin films showed slim ferroelectric P-E hysteresis and field-induced strain loops at room temperature. The 1.0 and 3.0 mol% Mn-doped 0.95NaNbO3-0.05BaTiO3 films showed remanent polarization values of 6.3 and 6.2 μC/cm2, and coercive field of 41 and 55 kV/cm, respectively. From the slope of the field-induced strain loop, the effective piezoelectric coefficient (d33) was found to be 40-60 pm/V.  相似文献   

12.
The Pb(Zr0.80Ti0.20)O3 (PZT) thin films with and without a PbO buffer layer were deposited on the Pt(1 1 1)/Ti/SiO2/Si(1 0 0) substrates by radio frequency (rf) magnetron sputtering method. The PbO buffer layer improves the microstructure and electrical properties of the PZT thin films. High phase purity and good microstructure of the PZT thin films with a PbO buffer layer were obtained. The effect of the PbO buffer layer on the ferroelectric properties of the PZT thin films was also investigated. The PZT thin films with a PbO buffer layer possess better ferroelectric properties with higher remnant polarization (Pr = 25.6 μC/cm2), and lower coercive field (Ec = 60.5 kV/cm) than that of the films without a PbO buffer layer (Pr = 9.4 μC/cm2, Ec = 101.3 kV/cm). Enhanced ferroelectric properties of the PZT thin films with a PbO buffer layer is attributed to high phase purity and good microstructure.  相似文献   

13.
Bi2VO5.5 ferroelectric thin films were fabricated on LaNiO3/Si(100) substrate via chemical solution deposition. Ferroelectric and dielectric properties of the thin films annealed at 500-700 °C were studied. The thin film annealed at 700 °C exhibited more favorable ferroelectric and dielectric properties than those annealed at lower temperatures. The values of remnant polarization 2Pr and coercive field Ec for the film annealed at 700 °C are 10.62 µC/cm2 and 106.3 kV/cm, respectively. The leakage current of the film is about 1.92 × 10− 8 A/cm2 at 6 V. The possible mechanism of the dependence of electrical properties of the films on the annealing temperature was discussed.  相似文献   

14.
The effects of annealing temperatures 600, 650, 700, and 750 °C on microstructure, chemical composition, leakage current, ferroelectric, dielectric, and piezoelectric properties of Bi3.15Eu0.85Ti3O12 (BET) thin films prepared by metal–organic decomposition were studied in detail. The largest spontaneous polarization 2P s (98.7 μC/cm2 under 300 kV/cm), remnant polarization 2P r (81.7 μC/cm2 under 300 kV/cm), dielectric constant εr (889.4 at 100 kHz), effective piezoelectric coefficient d 33 (46.7 pm/V under 260 kV/cm), and lowest leakage current (1.3 × 10−6 A/cm2 under 125 kV/cm) of BET thin film were obtained with annealing at 700 °C. The mechanisms concerning the dependence of the enhancement d 33 are discussed according to the phenomenological equation, and the improved piezoelectric performance could make BET thin film a promising candidate for piezoelectric thin film devices.  相似文献   

15.
《Materials Letters》2006,60(21-22):2733-2737
Alternating rhombohedral/tetragonal Pb(ZrxTi1−x)O3 (Px) multilayered films were prepared via a chemical solution method. It has been found that the P45/P55 multilayers show significant dielectric enhancement comparing with the uniform P45 and P55 films, and this dielectric enhancement increases as the decrease of the layer periodicity. However, the dielectric constant of the Pb(Zr,Ti)O3 rhombohedral/tetragonal multilayered films decreases when the layer compositions are away from morphotropic phase boundary (MPB), and no remnant polarization enhancement was observed in all the multilayered films. After comparing the dielectric and ferroelectric properties of the multilayers with the corresponding single-phase films, the dielectric enhancement in P45/P55 multilayers was ascribed to the formation of the MPB region around the interfaces between the P45 and P55 layers.  相似文献   

16.
Thin films of the relaxor ferroelectric Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT) on Pt/Ti/SiO2/Si (Pt/Si) substrates both with and without a Pb(Zr0.52Ti0.48)O3 (PZT) interfacial layer were investigated. Perovskite and pyrochlore coexistence was observed for PMN-PT thin films without a PZT interfacial layer. Interestingly, most of the pyrochlore phase was observed in single-coated films and in the first layer of multi-coated films. The pyrochlore phase exhibited grains with an average size of about 25 nm, which is smaller than those of the perovskite phase (about 90 nm). In contrast, for PMN-PT thin films grown on a PZT interfacial layer, the formation of a pyrochlore phase at the interface between PMN-PT layers and the substrate is completely suppressed. Moreover, small grains are not observed in the films with a PZT interfacial layer. The measured polarization-electric field (P-E) hysteresis loops of PMN-PT films with and without PZT layers indicate that enhanced electrical properties can be obtained when a PZT interfacial layer is used. These enhanced properties include an increase in the value of remanent polarization Pr from 2.7 to 5.8 μC/cm2 and a decrease in the coercive field Ec from 60.5 to 28.0 kV/cm.  相似文献   

17.
High quality epitaxial Bi3.15Nd0.85Ti3O12 (BNT) thin films with thicknesses from 30 to 80 nm have been integrated on SiO2/Si substrates. MgO templates deposited by ion-beam-assisted deposition and SrRuO3 (SRO) buffer layers processed by pulsed laser deposition have been used to initiate the epitaxial growth of BNT films on the amorphous SiO2/Si substrates. The structural and ferroelectric properties were investigated. Microstructural studies by X-ray diffraction and transmission electron microscopy revealed high quality crystalline with an epitaxial relationship of (001)BNT||(001)SRO||(001)MgO and [100]BNT||[110]SRO||[110]MgO. A ferroelectric hysteresis loop with a remanent polarization of 3.1 μC/cm2 has been observed for a 30 nm thick film. The polarization exhibits a fatigue-free characteristic up to 1.44 × 1010 switching cycles.  相似文献   

18.
PbZr0.52Ti0.48O3 films (PZT) have been grown epitaxially on SrRuO3/LaAlO3 (SRO/LAO) substrates using pulse laser deposition. In order to improve the ferroelectric properties of the PZT, one LAO buffer was introduced into the interface of PZT/SRO. The dependence of the electrical properties of the PZT films on the buffer thickness was studied. When a 10-nm-thick buffer was used, the remnant polarization (Pr) of the PZT film reached 58 ± 5 μC/cm2, 2 times larger than the sample without any buffer layer. The leakage current was reduced 1-2 orders of magnitude. Besides, the PZT film with 10-nm-thick LAO buffer also exhibited good fatigue endurance after 109 switching cycles. These results could propose one effective way to improve the properties of ferroelectric films deposited on oxide electrodes.  相似文献   

19.
The sol-gel deposition method has been successfully applied to obtain Pb(Zr0.2Ti0.8)O3 thin films on platinized silicon wafers. Addition of different amounts (7-15 wt.%) of organic macromolecular polyvinylpyrrolidone in the precursor solution prior to spin coating proves to be an excellent method for obtaining porous films. The crystal structure of as deposited films was analyzed by X-ray diffraction. The porous films show perovskite phase after annealing at 650 °C. The surface morphology has been studied by Atomic Force Microscopy and Scanning Electron Microscopy. The surface profile indicates a roughness of the film of 5 nm and no microcracks on the surface. The ferroelectric behavior was proved for each film, by hysteresis loops and by the “butterfly” shape of the capacitance-voltage characteristics. The remnant polarization and the coercive field decrease while the amount of added PVP increases.  相似文献   

20.
Calcium (Ca)-doped bismuth ferrite (BiFeO3) thin films prepared by using the polymeric precursor method (PPM) were characterized by X-ray diffraction (XRD), field emission gun scanning electron microscopy (FEG-SEM), transmission electron microscopy (TEM), polarization and piezoelectric measurements. Structural studies by XRD and TEM reveal the co-existence of distorted rhombohedral and tetragonal phases in the highest doped BiFeO3 where enhanced ferroelectric and piezoelectric properties are produced by internal strain. Resistive switching is observed in BFO and Ca-doped BFO which are affected by the barrier contact and work function of multiferroic materials and Pt electrodes. A high coercive field in the hysteresis loop is observed for the BiFeO3 film. Piezoelectric properties are improved in the highest Ca-doped sample due to changes in the crystal structure of BFO for a primitive cubic perovskite lattice with four-fold symmetry and a large tetragonal distortion within the crystal domain. This observation introduces magnetoelectronics at room temperature by combining electronic conduction with electric and magnetic degrees of freedom which are already present in the multiferroic BiFeO3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号