共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
一种结合关联规则技术在数据库中挖掘分类规则的方法 总被引:3,自引:0,他引:3
在数据库中发现分类规则是数据挖掘的一个重要内容,由于数据集往往由不精确数据组成,所以数据集不能截然划分为正例集和反倒集,因而无法直接采用示例学习的方法发现分类规则。本文结合关联规则技术,将原始数据集转换为决策表,使决策表具有无噪声和代表性高的特点,通过对决策表进行示例学习便可以挖掘出分类规则。 相似文献
4.
刘红梅 《数字社区&智能家居》2009,(3)
分析、比较了当前具有代表性的分类关联算法,总结了关联规则分类存在的问题,便于使用者根据需要选择合适的算法,也便于研究者对算法进行研究改进,提出性能更好的分类算法。 相似文献
5.
遥感图像分类是遥感领域的研究热点之一.提出了一种基于自适应区间划分的模糊关联遥感图像分类方法(fuzzy associative remote sensing classification,FARSC).算法根据遥感图像分类的特点,利用模糊C均值聚类算法自适应地建立连续型属性模糊区间,使用新的剪枝策略对项集进行筛选从而避免生成无用规则,采用一种新的规则重要性度量方法对多模糊分类规则进行融合,从而有效地提高分类效率和精确度.在UCI数据和遥感图像上所作实验结果表明,算法具有较高的分类精度以及对样本数量变化的不敏感性,对于解决遥感图像分类问题,FARSC算法具有较高的实用性,是一种有效的遥感图像分类方法. 相似文献
6.
基于模糊分类关联规则的分类系统 总被引:9,自引:0,他引:9
为了构建高性能的分类系统,应用模糊集软化数量型属性的划分边界,提出了模糊分类关联规则的挖掘算法。由于模糊集能很好地贴近人类的思维方式,因此挖掘得到的模糊分类关联规则易于被人理解.接着提出了基于模糊分类关联规则的分类系统,并采用遗传优化算法训练分类系统.实例分析的结果表明,基于模糊分类关联规则的分类系统具有较好的精度和可解释性. 相似文献
7.
关联分类具有较高的分类精度和较强的适应性,然而由于分类器是由一组高置信度的规则构成,有时会存在过度拟合问题。提出了基于规则兴趣度的关联分类(ACIR)。它扩展了TD-FP-growth算法,使之有效地挖掘训练集,产生满足最小支持度和最小置信度的有趣的规则。通过剪枝选择一个小规则集构造分类器。在规则剪枝过程中,采用规则兴趣度来评价规则的质量,综合考虑规则的预测精度和规则中项的兴趣度。实验结果表明该方法在分类精度上优于See5、CBA和CMAR,并且具有较好的可理解性和扩展性。 相似文献
8.
关联规则挖掘与分类规则挖掘的比较研究 总被引:1,自引:0,他引:1
关联规则挖掘与分类规则挖掘都是数据挖掘,领域中很重要的技术。本文首先简要介绍了关联规则挖掘和分类规则挖掘的基本知识,主要从挖掘目的、发现规则算法的方法、算法的设计思想等几个方面对它们进行了比较,最后介绍了它们之间的联系。 相似文献
9.
针对现有关联分类技术的不足,提出了一种适用于关联分类的增量更新算法IUAC。该算法是基于频繁模式树挖掘和更新关联规则的,并使用一种树形结构来存储最终用于分类的关联规则。同时,增加了对分类规则的约束条件,进一步控制了用于分类的关联规则的数量。最后,对算法整体进行了分析和讨论。 相似文献
10.
论文首先对一种基于关联规则分类的算法做出了分析。然后对算法中的类关联规则的提取方法进行了改进,得到了一种新的基于关联规则分类的算法。并结合棉花病虫害数据运行的结果对两种算法的运行效率和实用性进行了比较。 相似文献
11.
数据挖掘技术是当前数据库和人工智能领域研究的热点课题,为了使人们对该领域现状有个概略了解,在消化大量文献资料的基础上,首先对数据挖掘技术的国内外总体研究情况进行了概略介绍,包括数据挖掘技术的产生背景、应用领域、分类及主要挖掘技术;结合作者的研究工作,对关联规则的挖掘、分类规则的挖掘、离群数据的挖掘及聚类分析作了 较详细的论述;介绍了关联规则挖掘的主要研究成果,同时指出了关联规则衡量标准的不足及其改进方法,提出了分类模式的准确度评估方法;最后,描述了数据挖掘技术在科学研究、金属投资、市场营销、保险业、制造业及通信网络管理等行业的应用情况,并对数据挖掘技术的应用前景作了展望。 相似文献
12.
关联规则的几种开采算法及其比较分析 总被引:14,自引:0,他引:14
关联规则的发现是数据开采的一个重要方面,目前有许多人正致力于关联规则的快速开采集法,本文介绍几种开采大型事务数据库中所有关联规则的算法,并比较它们的效率。 相似文献
13.
介绍了一个通用的数据工具DMTools。它实现了基于数据库的知识发现的主要过程,可视分析,数据预处理,数据库的知识发现,数据挖掘,模型解释及模型评估算。主要介绍了这个系统的体系结构和各愉的功能。使用本工具。可从各行业的历史业务数据库中挖掘出隐含的有价值的知识,用于决策支持。 相似文献
14.
一种改进的关联规则的增量式更新算法 总被引:1,自引:0,他引:1
增量关联规则挖掘的主要思想是在原有规则的基础上,去除那些不满足条件的旧规则,发现满足条件的新规则,目的是尽量减少计算量.增量规则算法主要解决两类问题,即最小支持度的更新和数据库的更新.目前大多数算法对上述两个条件只更新其中一个,另一个保持不变,而实际应用中往往需要两者都更新.通过对数据挖掘中的IUA算法和FUP算法的分析和研究,提出IFU算法,用于解决数据库和最小支持度均发生改变时关联规则的增量式更新问题.相对于IUA算法和FUP算法以及基于他们改进的算法,该算法不仅扩展了更新条件,而且减少了对事务数据库和新增数据库的扫描次数.模拟实验表明IFU算法提高了更新效率. 相似文献
15.
基于数组的Apriori算法的改进 总被引:11,自引:1,他引:11
本文通过对基于数组的Apriori算法的改进,提高了算法对内存空间的利用效率.同时利用数据集删减技术,提高了算法效率。 相似文献
16.
一种新的关联规则挖掘的模型 总被引:1,自引:0,他引:1
1.引言 support-confidence模型是正关联规则挖掘普遍应用的模型,而如何度量关联规则的不确定性则是正关联规则挖掘中的重要问题之一。在该模型中,用supp(X∪Y)和conf(X→Y)来度量关联规则X→Y的不确定性。然而,用这一度量标准可能会得到诸如X→Y,但X与Y不相关(或独立)的规则。可见,用conf(X→Y)来度量关联规则是不够的. 实际应用中,我们不仅要挖掘正关联规则,而且还要挖掘负关联规则。正关联规则即形如X→Y的式子,负关联规则即形如X→Y的式子,其中X,YI,X∩Y=,I为数据库D中的所有项的集合,首先看一个例子,若p(c)=0.6,p(t)=0.4,p(t∪c)=0.05,p(t∪c)=0.35,minconf=0.52,有p(t∪c)/p(t)=0.05/0.4=0.125minconf。因此,t→c为一有效规则。 相似文献
17.
18.
19.
规则聚类将关联规则挖掘产生的大量规则重新组织,帮助用户发现感兴趣的规则。规则距离函数是规则聚类中的重要一环。本文基于分类信息的层次结构特点,对已有的规则距离函数进行改进。提出了参数控制距离和递归杈重距离的方法,解决了以往规则距离函数的多次匹配问题。通过距离函数的对比实验。证明提出的方法是合理有效的。 相似文献
20.
一种Web数据挖掘技术模型分析与挖掘算法 总被引:1,自引:0,他引:1
Web上有海量的数据信息,怎样对这些数据进行复杂的应用成了现今数据库技术的研究热点。数据挖掘就是从大量的数据中发现隐含的规律性的内容,解决数据的应用质量问题。充分利用有用的数据,废弃虚伪无用的数据,是数据挖掘技术的最重要的应用。本文着重介绍数据挖掘引擎的主要技术和和数据挖掘算法,这使得用户对数据的生成、收集、存储和处理数据的能力大大提高。 相似文献