首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Single functional molecules offer great potential for the development of novel nanoelectronic devices with capabilities beyond today's silicon-based devices. To realise single-molecule electronics, the development of a viable method for connecting functional molecules to each other using single conductive polymer chains is required. The method of initiating chain polymerisation using the tip of a scanning tunnelling microscope (STM) is very useful for fabricating single conductive polymer chains at designated positions and thereby wiring single molecules. In this feature article, developments in the controlled chain polymerisation of diacetylene compounds and the properties of polydiacetylene chains are summarised. Recent studies of "chemical soldering", a technique enabling the covalent connection of single polydiacetylene chains to single functional molecules, are also introduced. This represents a key step in advancing the development of single-molecule electronics.  相似文献   

2.
纳米石墨烯是组成石墨烯结构的一部分,尺寸一般介于1~100 nm,可以作为结构单元构筑石墨烯、碳纳米管和富勒烯等功能碳材料。纳米石墨烯具有一定的量子效应、边缘效应和界面效应,在新型分子电子器件、传感器等领域有着巨大的应用潜力。本文重点介绍"自下而上"化学合成纳米石墨烯的方法、含七元环或八元环特殊结构的纳米石墨烯、杂原子掺杂的纳米石墨烯以及纳米石墨烯的边缘修饰。探讨了不同合成方法的优势和特点,介绍了不同结构纳米石墨烯的性能及应用前景,概括了"自下而上"合成纳米石墨烯存在的问题及未来的发展趋势。  相似文献   

3.
Poly(1-butene) (PB-1) films drawn from the melt have been deposited on highly oriented pyrolytic graphite (HOPG) substrates for investigation with the scanning tunneling microscope (STM). The STM investigations showed images of PB-1 flakes extending over some hundred nanometers. Their thickness was determined to be much larger than the normal tunneling distance established between the tip and a good conducting (metallic) sample surface. Close to monomolecular film steps, our STM measurements simultaneously revealed both the atomic resolution of the HOPG substrate and a superlattice showing an ordered structure pseudomorphic to the helical nature of the PB-1 macromolecule.  相似文献   

4.
Electronic and optical properties of molecules and molecular solids are traditionally considered from the perspective of the frontier orbitals and their intermolecular interactions. How molecules condense into crystalline solids, however, is mainly attributed to the long-range polarization interaction. In this Account, we show that long-range polarization also introduces a distinctive set of diffuse molecular electronic states, which in quantum structures or solids can combine into nearly-free-electron (NFE) bands. These NFE properties, which are usually associated with good metals, are vividly evident in sp(2) hybridized carbon materials, specifically graphene and its derivatives. The polarization interaction is primarily manifested in the screening of an external charge at a solid/vacuum interface. It is responsible for the universal image potential and the associated unoccupied image potential (IP) states, which are observed even at the He liquid/vacuum interface. The molecular electronic properties that we describe are derived from the IP states of graphene, which float above and below the molecular plane and undergo free motion parallel to it. Rolling or wrapping a graphene sheet into a nanotube or a fullerene transforms the IP states into diffuse atom-like orbitals that are bound primarily to hollow molecular cores, rather than the component atoms. Therefore, we named them the superatom molecular orbitals (SAMOs). Like the excitonic states of semiconductor nanostructures or the plasmonic resonances of metallic nanoparticles, SAMOs of fullerene molecules, separated by their van der Waals distance, can combine to form diatomic molecule-like orbitals of C(60) dimers. For larger aggregates, they form NFE bands of superatomic quantum structures and solids. The overlap of the diffuse SAMO wavefunctions in van der Waals solids provides a different paradigm for band formation than the valence or conduction bands formed by interaction of the more tightly bound, directional highest occupied molecular orbitals (HOMOs) or the lowest unoccupied molecular orbitals (LUMOs). Therefore, SAMO wavefunctions provide insights into the design of molecular materials with potentially superior properties for electronics. Physicists and chemists have thought of fullerenes as atom-like building blocks of electronic materials, and superatom properties have been attributed to other elemental gas-phase clusters based on their size-dependent electronic structure and reactivity. Only in the case of fullerenes, however, do the superatom properties survive as delocalized electronic bands even in the condensed phase. We emphasize, however, that the superatom states and their bands are usually unoccupied and therefore do not contribute to intermolecular bonding. Instead, their significance lies in the electronic properties they confer when electrons are introduced, such as when they are excited optically or probed by the atomically sharp tip of a scanning tunneling microscope. We describe the IP states of graphene as the primary manifestation of the universal polarization response of a molecular sheet and how these states in turn define the NFE properties of materials derived from graphene, such as graphite, fullerenes, and nanotubes. Through low-temperature scanning tunneling microscopy (LT-STM), time-resolved two-photon photoemission spectroscopy (TR-2PP), and density functional theory (DFT), we describe the real and reciprocal space electronic properties of SAMOs for single C(60) molecules and their self-assembled 1D and 2D quantum structures on single-crystal metal surfaces.  相似文献   

5.
Molecular electronics has been associated with high density nano-electronic devices. Developments of molecular electronic devices were based on reversible switching of molecules between the two conductive states. In this paper, self-assembled monolayers of dodecanethiol (DDT) and thiol tethered iron(II)clathrochelate (IC) have been prepared on gold film. The electrochemical and electronic properties of IC molecules inserted into the dodecanethiol monolayer (IC-DDT SAM) were investigated using voltammetric, electrochemical impedance spectrpscopy (EIS), scanning tunneling microscopy (STM) and cross-wire tunneling measurements. The voltage triggered switching behaviour of IC molecules on mixed SAM was demonstrated. Deposition of polyaniline on the redox sites of IC-DDT SAM using electrochemical polymerization of aniline was performed in order to confirm that this monolayer acts as nano-patterned semiconducting electrode surface.  相似文献   

6.
Resonances are ubiquitous in molecular heterojunctions and in scanning tunneling microscopy (STM) experiments. In the former environment, resonance tunneling is essential for favorable wire-length-dependence of the conductance and is often the mechanism underlying conductance enhancement through application of a gate voltage. In the latter environment, resonance tunneling has served to develop a powerful vibrational spectroscopy. Resonance conductance is often strongly nonadiabatic; in the course of the tunneling event, electron energy is channelled into vibrational modes and triggers molecular dynamics. The qualitative physics underlying current-driven, resonance-mediated dynamics in molecular electronics is very simple, and is familiar from related phenomena such as gas phase electron-molecule scattering and photochemistry on conducting surfaces. Equilibrium displacement between the initial and resonant states translates into vibronic coupling in the language of the Marcus theory of electron transfer; it produces a nonstationary superposition in the nuclear subspace that evolves during the resonance lifetime. Upon relaxation the system is internally excited and interesting dynamics is likely to ensue. While the underlying physics is very general, the single-molecule STM and molecular heterojunction environments open unique and exciting opportunities. The former introduces the possibility of determining resonance lifetimes through fit of experimental voltage dependencies to a quantum mechanical theory. The latter introduces the possibility of developing coherently driven molecular machines, a new form of nanolithography, and a new means of manipulating the conductivity of molecular-scale devices. We briefly review the theory of current-driven dynamics in molecular-scale devices, discuss the results of ongoing research on surface nanochemistry and molecular machines, and sketch a variety of potential applications.  相似文献   

7.
Poly(ethylene) (PE) ultra thin films drawn from the melt have been deposited on highly oriented pyrolytic graphite (HOPG) substrates for an investigation with the scanning tunneling microscope (STM). Similar to earlier examinations of poly (1-butene) (PB-1) ultra thin films (1), the STM investigations exhibited images of PE flakes extending over some hundered nanometers. Their thickness was determined to be much larger than the normal established tunneling distance between the tip and a good conducting (metallic) sample surface. It is supposed that the STM-tip penetrates the film and reduces its thickness by scanning over the film. Thus, a destruction of the film is likely leaving only a monomolecular layer of PE macromolecules on the graphite surface. At higher resolutions an ordered structure pseudomorphic to the simple chain nature of the PE macromolecule is revealed.  相似文献   

8.
Surface structures controlled at the nanometer and single-molecule levels, with functions crucially determined by interfacial electron transfer (ET) are broadly reported in recent years, with different kinds of electrochemically controlled nanoscale/single molecule systems. One is the broad class of metallic and semiconductor-based nanoparticles, nano-arrays, nanotubes, and nanopits. Others are based on self-assembled molecular monolayers. The latter extend to bioelectrochemical systems with redox metalloproteins and DNA-based molecules as targets.We overview here some recent achievements in areas of interfacial electrochemical ET systems, mapped to the nanoscale and single-molecule levels. Focus is on both experimental and theoretical studies in our group. Systems addressed are organized monolayers of redox active transition metal complexes, and metalloproteins and metalloenzymes on single-crystal Au(1 1 1)-electrode surfaces. These systems have been investigated by voltammetry, spectroscopy, microcantilever technology, and scanning probe microscopy. A class of Os-complexes has shown suitable as targets for electrochemical in situ scanning tunnelling microscopy (STM), with close to single-molecule scanning tunnelling spectroscopic (STS) features. Mapping of redox metalloproteins from the three major classes, i.e. blue copper proteins, heme proteins, and iron-sulfur proteins, at the monolayer and single-molecule levels have also been achieved. In situ STM and spectroscopy of redox molecules and biomolecules have been supported by new theoretical frames, which extend established theory of interfacial electrochemical ET.The electrochemical nanoscale and single-molecule systems discussed are compared with other recent nanoscale and single-molecule systems with conspicuous device-like properties, particularly unimolecular rectifiers and single-molecule transistors. Both of these show analogies to electrochemical in situ STM features of redox molecules and biomolecules.  相似文献   

9.
The application of scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS) to the study of ceramic materials is demonstrated with analyses of SiC (6H) single crystals and polycrystalline ZnO both in air and under vacuum. In addition to observations of the surface structure of silicon carbide, mid-band-gap electronic states are identified, using STS under vacuum. Surfaces of the sintered ZnO were found to be terraced, having flat areas on the scale of tens of nanometers square, and typical step heights of 1 to 3 nm. The general conditions necessary to enable STM imaging of large-band-gap materials typical of most ceramics are discussed. In particular, the effects of doping to create mid-band-gap states and induce band bending due to space charging are illustrated in the analyses of SiC and ZnO.  相似文献   

10.
Schneider WD 《Chimia》2012,66(1-2):16-22
Recent advances in low-temperature scanning tunneling microscopy (STM) and spectroscopy (STS) have provided new opportunities for the investigation of the local geometric, electronic, magnetic, and optical properties of nanostructures. This review focuses on the presentation and discussion of single molecules, supramolecular assemblies, and other nanostructures; all research results obtained in our laboratory. The emphasis is directed to the observation of new effects, where the properties of matter at the nanoscale differ from those at the mesoscopic or macroscopic scale: small is different. This fact is illustrated for the conservation of chirality in a hierarchical supramolecular assembly of organic molecules and for local light emission from supported molecules. The latter indicates a possible route towards an optical spectroscopic analysis on the scale of single molecules.  相似文献   

11.
Repp J  Meyer G 《Chimia》2010,64(6):370-375
Ultrathin insulating films on metal substrates are unique systems for using a scanning tunneling microscope (STM) to study the electron transport properties in the weak-coupling limit. The electronic decoupling provided by the films allows the direct imaging of the unperturbed molecular orbitals, as will be demonstrated in the case of individual pentacene molecules. The coupling between electronic states localized on the adsorbate and optical phonons in a polar insulator has two important implications: Peaks in conductance spectra resulting from resonant tunneling into electronic states of the molecules are significantly broadened by the presence of the insulator. Second, the ionic relaxations in a polar insulator may lead to an interesting charge bistability in atoms and molecules. STM-based molecular manipulation has been used to form a metallo-organic complex as well as to switch the position of the two hydrogen atoms in the inner cavity of single free-base naphthalocyanine molecules.  相似文献   

12.
Graphite has been subjected to surface damage by Ar+ ion bombardment. It has been found by scanning tunneling microscopy (STM) that deposited Cs atoms preferentially cluster at the artificially-produced vacancy clusters in the basal plane at 300 K. Density functional theory calculations show that Cs is more strongly bound at these defect sites than at basal plane step edges, providing a plausible explanation for the experimental observation. STM reveals that Cs intercalation into graphite occurs by diffusion through these vacancy clusters, acting as entry ports to the interior, at 700 K. DFT calculations show that these defects must consist of more than four contiguous atoms in order for Cs intercalation to be energetically easy. Experimentally, Cs atom nucleation at defect sites seems to culminate at Cs cluster heights near 1 nm and cluster diameters near 5 nm. Intercalated Cs produces coherent single Cs islands in the galleries as well as layered structures caused by superposition of overlapping individual islands. Oxygen exposure to graphite containing Ar+-produced defects does not influence Cs clustering at the defects or Cs entry into galleries beneath the defect. However, large oxygen exposures these clusters results in diminution of Cs intercalation, probably due to surface oxidation of Cs clusters.  相似文献   

13.
A series of measurements using a novel technique called electrostatic-manipulation scanning tunneling microscopy were performed on a highly-oriented pyrolytic graphite (HOPG) surface. The electrostatic interaction between the STM tip and the sample can be tuned to produce both reversible and irreversible large-scale vertical movement of the HOPG surface. Under this influence, atomic-resolution STM images reveal that a continuous electronic reconstruction transition from a triangular symmetry, where only alternate atoms are imaged, to a honeycomb structure can be systematically controlled. First-principles calculations reveal that this transition can be related to vertical displacements of the top layer of graphite relative to the bulk. Detailed analysis of the band structure predicts that a transition from parabolic to linear bands occurs after a 0.09 nm displacement of the top layer.  相似文献   

14.
Meyer G  Gross L  Mohn F  Repp J 《Chimia》2012,66(1-2):10-15
Scanning tunneling microscopy (STM) and atomic force microscopy (AFM) of single atoms and molecules on ultrathin insulating films have led to a wealth of novel observations and insights. Based on the reduced electronic coupling to the metallic substrate, these techniques allow the charge state of individual atoms to be controlled, orbitals of individual molecules to be imaged and metal-molecule complexes to be built up. Near-contact AFM adds the unique capabilities of imaging and probing the chemical structure of single molecules with atomic resolution. With the help of atomic/molecular manipulation techniques, chemical binding processes and molecular switches can be studied in detail.  相似文献   

15.
The study of single-molecule single-crystals of isotactic polystyrene was carried out by scanning tunneling microscopy (STM) and transmission electron microscopy (TEM). It was shown that STM provided more information than TEM. By means of STM, the single-molecule single-crystals were found even in the case of aggregation. Regular strips were also found on the top surface of single-molecule single-crystals. This seems to imply regular adjacent folding.  相似文献   

16.
Living cells use surface molecules such as receptors and sensors to acquire information about and to respond to their environments. The cell surface machinery regulates many essential cellular processes, including cell adhesion, tissue development, cellular communication, inflammation, tumor metastasis, and microbial infection. These events often involve multimolecular interactions occurring on a nanometer scale and at very high molecular concentrations. Therefore, understanding how single-molecules localize, assemble, and interact on the surface of living cells is an important challenge and a difficult one to address because of the lack of high-resolution single-molecule imaging techniques. In this Account, we show that atomic force microscopy (AFM) and near-field scanning optical microscopy (NSOM) provide unprecedented possibilities for mapping the distribution of single molecules on the surfaces of cells with nanometer spatial resolution, thereby shedding new light on their highly sophisticated functions. For single-molecule recognition imaging by AFM, researchers label the tip with specific antibodies or ligands and detect molecular recognition signals on the cell surface using either adhesion force or dynamic recognition force mapping. In single-molecule NSOM, the tip is replaced by an optical fiber with a nanoscale aperture. As a result, topographic and optical images are simultaneously generated, revealing the spatial distribution of fluorescently labeled molecules. Recently, researchers have made remarkable progress in the application of near-field nanoscopy to image the distribution of cell surface molecules. Those results have led to key breakthroughs: deciphering the nanoscale architecture of bacterial cell walls; understanding how cells assemble surface receptors into nanodomains and modulate their functional state; and understanding how different components of the cell membrane (lipids, proteins) assemble and communicate to confer efficient functional responses upon cell activation. We anticipate that the next steps in the evolution of single-molecule near-field nanoscopy will involve combining single-molecule imaging with single-molecule force spectroscopy to simultaneously measure the localization, elasticity, and interactions of cell surface molecules. In addition, progress in high-speed AFM should allow researchers to image single cell surface molecules at unprecedented temporal resolution. In parallel, exciting advances in the fields of photonic antennas and plasmonics may soon find applications in cell biology, enabling true nanoimaging and nanospectroscopy of individual molecules in living cells.  相似文献   

17.
Nanoscale images and tunneling spectra of cation-exchanged or polyatom-substituted heteropolyacids (HPAs) were probed by scanning tunneling microscopy (STM) at room temperature. All the HPAs formed two-dimensional ordered arrays on graphite surfaces, and their molecular dimensions were in good agreement with values determined by X-ray crystallography. It was observed that the negative differential resistance (NDR) peak voltage measured by STM was closely related to the reduction potential of the corresponding bulk HPA. The higher the reduction potential of the HPA, the lower the applied voltage at which NDR was observed.  相似文献   

18.
A stochastic model which may be used to analyze the formation of bonds connecting the interface formed by a substrate surface and a scanning tunneling microscope (STM) tip is presented. The model is tested by means of kinetic Monte Carlo simulations, and analytical predictions are given for some limiting cases. In the case of long time observations, the model may be applied to obtain information on the rate constants associated with the process and on the number of molecules trapped at the gap. In the case of short time observations, the results of the model for the probability of observing a given number of molecules bridging the gap are compared with the experimental results from the literature, showing a good predicting power.  相似文献   

19.
The use of self-assembly to fabricate surface-confined adsorbed layers (adlayers) from molecular components provides a simple means of producing complex functional surfaces. The molecular self-assembly process relies on supramolecular interactions sustained by noncovalent forces such as van der Waals, electrostatic, dipole-dipole, and hydrogen bonding interactions. Researchers have exploited these noncovalent bonding motifs to construct well-defined two-dimensional (2D) architectures at the liquid-solid interface. Despite myriad examples of 2D molecular assembly, most of these early findings were serendipitous because the intermolecular interactions involved in the process are often numerous, subtle, cooperative, and multifaceted. As a consequence, the ability to tailor supramolecular patterns has evolved slowly. Insight gained from various studies over the years has contributed significantly to the knowledge of supramolecular interactions, and the stage is now set to systematically engineer the 2D supramolecular networks in a "preprogrammed" fashion. The control over 2D self-assembly of molecules has many important implications. Through appropriate manipulation of supramolecular interactions, one can "encode" the information at the molecular level via structural features such as functional groups, substitution patterns, and chiral centers which could then be retrieved, transferred, or amplified at the supramolecular level through well-defined molecular recognition processes. This ability allows for precise control over the nanoscale structure and function of patterned surfaces. A clearer understanding and effective use of these interactions could lead to the development of functional surfaces with potential applications in molecular electronics, chiral separations, sensors based on host-guest systems, and thin film materials for lubrication. In this Account, we portray our various attempts to achieve rational design of self-assembled adlayers by exploiting the aforementioned complex interactions at the liquid-solid interface. The liquid-solid interface presents a unique medium to construct flawless networks of surface confined molecules. The presence of substrate and solvent provides an additional handle for steering the self-assembly of molecules. Scanning tunneling microscopy (STM) was used for probing these molecular layers, a technique that serves not only as a visualization tool but could also be employed for active manipulation of molecules. The supramolecular systems described here are only weakly adsorbed on a substrate, which is typically highly oriented pyrolytic graphite (HOPG). Starting with fundamental studies of substrate and solvent influence on molecular self-assembly, this Account describes progressively complex aspects such as multicomponent self-assembly via 2D crystal engineering, emergence, and induction of chirality and stimulus responsive supramolecular systems.  相似文献   

20.
Modeling electronic tunneling through molecular bridges is desired in order to understand the mechanism of long-range electron transfer reactions in nature, as well as for the design of novel molecular electronics devices. Particularly interesting is the effect of the nuclear motion at the molecular bridge on the electron transfer mechanism and rate. In this work we study the effect of electronic nuclear coupling at the molecular bridge on a unidirectional electronic tunneling process from an electron donor into a dissipative acceptor, as may appear in controlled electron transfer reactions at biological membranes, or in heterogeneous electron transfer reactions. The model includes a collection of harmonic bath modes coupled to the dissipative acceptor site and a single mode at the molecular bridge. The parameters of the dissipative bath are tuned such that the electronic population decays from the donor to the acceptor. This process is simulated using a time-dependent nonlinear Langevin-Schroedinger equation, based on a mean-field approximation for the electronic-nuclear coupling at the acceptor site and a numerically exact treatment of the electronic-nuclear coupling at the molecular bridge. The simulations at zero temperature and weak electronic-nuclear coupling demonstrate that electronic tunneling is promoted by coupling to the nuclear mode at the bridge. This result is consistent with our previous studies of electronic tunneling oscillations in a symmetric donor-bridge-acceptor complex, and it emphasizes the importance of electronic nuclear coupling in analyzing long-range electron transfer processes through molecular bridges or wires.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号