首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper derives the average bit error probability (BEP) of differential quaternary phase shift keying (DQPSK) with postdetection equal gain combining (EGC) diversity reception over independent and arbitrarily correlated fading channels. First, using the associated Legendre functions, the average BEP of DQPSK is analyzed over independent Rayleigh, Nakagami-m, and Rician fading channels. Finite-series closed-form expressions for the average BEP of DQPSK over L-branch independent Rayleigh and Nakagami-m fading channels (for integer Lm) are presented. Besides, a finite-series closed-form expression is given for the average BEP of differential binary phase shift keying (DBPSK) with EGC over independent Rician fading channels. Second, an alternative approach is propounded to study the performance of DQPSK over arbitrarily correlated Nakagami-m and Rician fading channels. Relatively simple BEP expressions in terms of a finite sum of a finite-range integral are proposed. Moreover, the penalty in signal to noise ratio (SNR) due to arbitrarily correlated channel fading is also investigated. Finally, the accuracy of the results is verified by computer simulation.  相似文献   

2.
Fu  H. Kam  P.Y. 《Electronics letters》2006,42(3):163-165
Bit error probability (BEP) performance of binary differential phase shift keying (DPSK) with differential detection over the nonselective, fast Rician fading channels with combining diversity reception is analysed. The analytical approach that exists in previously published literature for computing the BEP relied on a special case of the derivation given by Proakis that was concerned with the probability that a general quadratic form in complex Gaussian random variables is less than zero. However, evaluating the various coefficients required in the derivation leads to a computationally intensive solution. A simple derivation is presented which leads to a new, alternative BEP expression.  相似文献   

3.
This paper analyzes the average bit error probability (BEP) of the differential binary and quaternary phase-shift keying (DBPSK and DQPSK respectively) with multiple-input multiple-output (MIMO) systems employing postdetection equal gain combining (MIMO EGC) diversity reception over Rayleigh fading channels. Finite closed-form expressions for the average BEP of DBPSK and DQPSK are presented. Two approaches are introduced to analyze the error rate of DQPSK. The proposed structure for the differential phase-shift keying (DPSK) with MIMO EGC provides a reduced-complexity and low-cost receiver for MIMO systems compared to the coherent phase-shift keying system (PSK) with MIMO employing maximal ratio combining (MIMO MRC) diversity reception. Finally, a useful procedure for computing the associated Legendre functions of the second kind with half-odd-integer order and arbitrarily degree is presented.  相似文献   

4.
A method is described for obtaining tight closed-form bounds on the probability of error for M-ary phase-shift keying (M-PSK) and M-ary differential phase-shift keying (M-DPSK) on fading diversity channels. The channels exhibit doubly selective fading and have specular components. In addition, the random impulse responses of the diversity channels may be correlated; and the probability distributions for the fading on different diversity channels need not be the same. Error probability expressions are given for binary DPSK, 8-DPSK, and 16-DPSK modulation as examples of the application of the general method described  相似文献   

5.
Symbol and bit error rates of M-ary differentially encoded/differentially decoded phase-shift keying (MDPSK) and coherent M-ary phase-shift keying (M-PSK) over slow, flat, Rician fading channels are derived when linear diversity combining is applied to combat degradation due to fading. These closed-form solutions are general enough to cover several cases of nondiversity, additive white Gaussian noise (the nonfading mode), Rayleigh fading, mixtures of Rayleigh and Rician fading (the mixed mode), and Rician fading. The results presented here can also be applied to predict the error-rate performance when recent transmit diversity techniques are employed. The solutions for the nonuniform fading profile are included as well. Error probabilities are graphically displayed for both modulation schemes.  相似文献   

6.
The performance of an L-branch equal gain (EG) combiner on slow and nonselective Rician fading channels is analyzed. Two performance criteria are considered; the probability distribution of signal-to-noise power ratio (SNR) at the output of the EG combiner and the average bit error rate (BER). Matched filter receivers are considered for two binary modulation formats, coherent phase shift keying (CPSK) and noncoherent frequency shift keying (NCFSK). Results using both maximal ratio combining (MRC) and selection diversity combining (SC) are presented for comparison. Our results show that from a feasibility and practical tradeoffs point of view, the performance of an EG combiner may be as good as that of a MR combiner. The effects of gain unbalance between branches of the EG combiner on the probability distribution of SNR and on the bit error rates are also investigated. The Rician fading model may be used to model bath the microcellular environment and the mobile satellite fading channel. Hence, the results of this paper may be useful in both of these areas. Furthermore, in the development of the analysis, we present an efficient method for computing the distribution of sums of Rician random variables. This may be useful for other problems involving Rician fading. The suitability of modeling a Rician fading environment by a properly chosen Nakagami model is examined. A formula for determining the corresponding values of Rician parameter K and Nakagami parameter m is also assessed  相似文献   

7.
In this letter, we analyze the error performance of a mobile communication system with microdiversity and macrodiversity reception in gamma‐shadowed Rician fading channels for a binary differential phase‐shift keying modulation scheme. Analytical expressions for the probability density function (PDF) and moment‐generating function (MGF) are derived. The average bit error probability can be calculated by averaging the conditional bit error probability over the PDF or using the MGF‐based approach. Numerical results are graphically presented to show the effects of macrodiversity, correlation, number of diversity branches, and severity of both fading and shadowing.  相似文献   

8.
The microcellular radio environment is characterized by a Rician fading channel. The use of a slotted code division multiple access (CDMA) scheme is considered in single- and multi-microcell systems. The throughput and delay performance of a slotted CDMA network are analyzed for slow and fast Rician fading radio channels using differential phase shift keying (DPSK) modulation. The application of selection diversity (SD) and maximal ratio combining (MRC) improve the performance for both slow and fast fading. It is also shown that the use of forward error correcting (FEC) codes enhances the system performance. Computational results are presented for maximum rms delay spread in the order of 2 μs and data rates of 32 and 64 kbit/s. A comparative analysis of macro-, micro- and pico-cellular CDMA systems is also presented  相似文献   

9.
RicianAccurate performance analysis for linear receivers over frequency- and time-selective asynchronous code-division multiple-access Rician-fading channels is very useful and a general approach to this topic is very desirable. In this paper, by using a decision variable-based moment generating function approach, we provide a unified bit-error probability (BEP) analysis framework for different linear detectors with binary or quaternary differential phase-shift keying and postdetection combining over Rician-fading channels, taking into account the effects of the spreading code correlation, the system and fading-channel parameters, diversity combining, and branch correlation. To reduce the complexity of the exact BEP evaluation, we furthermore provide an approximate multivariate Gaussian assumption (MGA)-based method which entails a low complexity for BEP evaluation. Ideal and approximate linear minimum mean-squared error diversity receivers for correlated Rician-fading channels are proposed. Numerical results show that the phases of the line-of-sight (LOS) components of the desired user significantly affect the receiver performance over correlated multipath Rician channels, and this may be exploited to improve performance. Also, when the LOS components are affected by a significant Doppler shift, automatic frequency control is very useful in improving the receiver performance.  相似文献   

10.
This paper studies differential space-time modulation using diversity-encoded differential amplitude and phase shift keying (DAPSK) for the multiple-input multiple-output (MIMO) system over independent but not identically distributed (inid) time-correlated Rician fading channels. An asymptotic maximum likelihood (AML) receiver is developed for differentially detecting diversity-encoded DAPSK symbol signals by operating on two consecutive received symbol blocks sequentially. Based on Beaulieu’s convergent series, the bit error probability (BEP) upper bound is analyzed for the AML receiver over inid time-correlated Rician fading channels. Particularly, an approximate BEP upper bound of the AML receiver is also derived for inid time-invariant Rayleigh fading channels with large received signal-to-noise power ratios. By virtue of this approximate bound, a design criterion is developed to determine the appropriate diversity encoding coefficients for the proposed DAPSK MIMO system. Numerical and simulation results show that the AML receiver for diversity-encoded DAPSK is nearly optimum when the average received signal-to-noise power ratios are high and the channel is heavily correlated fading and can provide better error performance than conventional noncoherent MIMO systems when the effect of non-ideal transmit power amplification is taken into account.  相似文献   

11.
We derive a formula for the bit error probability (BEP) of M-ary continuous phase frequency shift keying with differential phase detection and maximum ratio combining diversity in Rician fast-fading channels. We assume that transmitter and receiver filters distort the signal and limit the noise. We compute the BEP as a function of energy-to-noise ratio per bit (Eb/N0) and other system and channel parameters: Rician factor K=0, 6 dB, 10, ∞; number of diversity channels L=1, 2, 3; Doppler frequency shift fD T=0, 0.01, 0.02; Butterworth filters in transmitter and receiver of order NT=3 and NR=4; optimal sampling time and filter bandwidth. In all cases the BEP is significantly reduced by diversity  相似文献   

12.
Exact, closed-form, error probability expressions for noncoherent M-ary frequency-shift-keying (MFSK) systems that employ postdetection equal-gain diversity over Rayleigh, Rician, and Nakagami-m channels are derived using a Laplace derivative formula. Both independent and generically correlated fading cases are considered. For independent fading, closed-form solutions are also derived for both Nakagami-q fading (either with identical or dissimilar fading statistics) and mixed fading cases. Previous results are shown to be specific instances of our general expressions. In addition, a concise, derivative formula is derived for calculating the bit error rate of square-law detected multichannel binary differential phase-shift-keying (DPSK) signals. All of these expressions are applicable in many cases of practical interest and provide accurate predictions of the performance of both binary and M-ary orthogonal signaling over generalized fading channels with arbitrary parameters.  相似文献   

13.
Noncoherent diversity reception of M-ary frequency-shift keying (MFSK) signals becomes increasingly important due to its widespread use in wireless communications. Its error performance analysis, however, is not available in the literature except for the simple case using binary modulation. We address the problem directly based on the decision variables, ending up with closed-form solutions to both conditional and average error probabilities for a general noncoherent MFSK diversity system operating on Rayleigh, Rician, and Nakagami fading channels. The solutions involve some higher order derivatives, and efficient recursive algorithms have been derived for their calculation. The solutions are very general permitting arbitrary diversity order, symbol size, channel parameters, and antenna-array covariance matrix. Numerical examples are also presented for illustration  相似文献   

14.
The distribution function of the probability of error in the presence of Rayleigh fading and Gaussian noise is determined for the basic binary modulation schemes of coherent frequencyshift keying (CFSK), noncoherent frequency-shift keying (NCFSK), differential phase-shift keying (DPSK), and coherent phase-shift keying (CPSK). General expressions for the distribution function of error probability are also derived when linear maximal-ratio diversity combining is employed. Results are given for various values of average error probability and various orders of diversity.  相似文献   

15.
The final closed-form expression for bit error probability (BEP) is presented for a DS-CDMA system using a maximal ratio combining (MRC) diversity over a Rician fading channel. The accuracy of the BEP estimate evaluated by this expression is verified by comparison with a semi-analytic simulation result. The effect that diversity order has on the BEP is also considered for typical multipath delay profiles with different Rician ratios  相似文献   

16.
In the present work, simple closed-form series solutions for the average error rate of several coherent modulation schemes such as, binary phase shift keying (BPSK), binary frequency shift keying (BFSK), differential binary phase shift keying (DBPSK), quadrature phase shift keying (QPSK), offset-QPSK, minimum shift keying (MSK), and square M-ary quadrature amplitude modulation (M-QAM), operating over frequency non-selective slow Rician fading channel and corrupted by additive white Gaussian noise (AWGN) are derived. Further, to improve the link quality, receiver antenna space diversity is considered, where multiple independent and identically distributed (i.i.d.) as well as uncorrelated signal replicas are combined before successive demodulation. The proposed linear predetection combiner follows optimum maximal ratio combining (MRC) algorithm. Starting from a novel unified expression of conditional error probability the error rates are analysed using probability density function (pdf) based approach. The derived end expressions, consisting of rapidly converging infinite series summations of Gauss hypergeometric function, are accurate, free from any numerical integration and general enough, as it encompasses as special situations, some cases of non-diversity, non-fading AWGN and Rayleigh fading. Symbol or, bit error probabilities (SEP/BEP) are graphically displayed against signal to noise ratio (SNR) per bit per channel for all the digital modulation schemes stated above with different values of diversity order L and varying values of the channel specular-to-scatter ratio or, the Rician parameter K, as found from the measured statistics of mobile and indoor wireless channels. In addition, to examine the dependence of error rate performance of M-QAM on the constellation size M, numerical results are plotted for various values of M. Selected simulation results are also provided to verify the analytical deductions. The series solutions presented in current text realize a trade-off between precision and complexity and offers valuable insight into the performance evaluation over a fading channel in a unified manner.  相似文献   

17.
For binary noncoherent orthogonal frequency-shift keying and binary differential phase-shift keying over slow nonselective Rician fading channels having arbitrarily correlated branches and unequal branch powers, a closed-form expression for the symbol-error probability in the case of postdetection equal-gain combining is obtained directly from the characteristic function of the decision variable  相似文献   

18.
Mobile radio systems require highly bandwidth efficient digital modulation schemes because of the limited resources of the available radio spectrum. A theoretical analysis of bit error rate (BER) is presented for the differential detection of differentially encoded 16-level amplitude/phase shift keying (16DAPSK) under Rician fading in the presence of Rayleigh faded co-channel interference (CCI) and additive white Gaussian noise (AWGN). Differential detection comprises eight-level differential phase detection (DPD) and two-level amplitude ratio detection (ARD). Exact expressions for probability distributions of differential phase noise and amplitude ratio are derived for the BER calculation. The calculated BER performance of 16DAPSK is presented for various values of Rician fading K factor, Doppler spread of diffused component, and Doppler shift of the specular component, and is compared with that of 4-16DPSK. It is shown that 16DAPSK is superior to 16DPSK and requires 1.7 (1.6) dB less Eb/N0 (SIR) at BER=10-3 in Rician channels with K=5 dB  相似文献   

19.
A new closed-form expression is derived for the exact bit-error probability (BEP) for optimum combining with binary phase-shift keying. The exact BEP expression is for multiple, equal power, cochannel interferers and multiple reception branches. It is assumed that the aggregate interference and noise is Gaussian and that both the desired signal and interference are subject to Rayleigh fading. The derivation starts by expressing the optimum combining decision statistic as a sum of quadratic forms of Gaussian random variables and it proceeds to average over the fading interference. The new BEP expression has low complexity as it contains only finite sums and products.  相似文献   

20.
dThis paper is concerned with the error-performance analysis of binary and quadrature differential phase-shift keying with differential detection over the nonselective, Rayleigh fading channel with combining diversity reception. The diversity channels are independent, but have nonidentical statistics. The fading process in each channel is assumed to have an arbitrary Doppler spectrum with arbitrary Doppler bandwidth. Both optimum diversity reception and suboptimum diversity reception are considered. Results available previously apply only to the case of second-order diversity and require numerical integration for their actual evaluation. Our results are more general in that the order of diversity is arbitrary. Moreover, the bit-error probability (BEP) result is obtained in an exact, closed-form expression which shows the behavior of the BEP as an explicit function of the one-symbol-interval fading correlation coefficient at the matched-filter output, the mean received signal-to-noise ratio per symbol per channel, and the order of diveristy.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号