首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The symmetry of chick cochlear hair bundle motion was examined in this study. Isolated segments from the basilar papilla were incubated in vitro in either normal or low calcium medium, which is known to disrupt tip links. Stereociliary bundles, stimulated with an oscillating water microjet, were oriented in profile and viewed in slow motion at high magnification with stroboscopic illumination. The displacement of the tallest hair in the bundle was fixed to 20 degrees peak-to-peak (P-P) motion. The angular deflections of the shortest and tallest hairs were then measured in both the positive (towards the tallest hair) and negative (towards the shortest) directions with respect to the non-stimulated position of the hair. The tallest hairs exhibited nearly symmetric motion in medium containing normal and low calcium. The shortest hairs, in normal calcium, displayed considerable asymmetry with angular deflections in the positive direction significantly larger than in the negative direction. This asymmetric motion disappeared after incubation in low calcium. The shortest hair angular displacement in the negative direction, however, was the same in both normal and low calcium conditions. These results indicated that the tallest and shortest hairs moved with equal angular deflection in the negative direction, while in the positive direction the shortest hair moved through a significantly greater angular deflection than the tallest hair. The implication of this finding is that the tip links contributed significantly to hair bundle motion in the positive direction only.  相似文献   

2.
Brownian motion of the hairs (stereocilia) of amphibian hair cells has been shown in experiments to be in the range of some nm. Our models of the Brownian motion of coupled harmonic oscillators with mechanical properties of stereocilia lead to similar displacements. Computer simulation shows that stochastic fluctuations enhance the encoding of low level acoustic signals. Stochastic resonance lowers the detection threshold of auditory signals to amplitudes one order of magnitude lower than that of the Brownian motion.  相似文献   

3.
In sensory hair cells of the cochlea, deflection of the stereociliary bundle results in direct mechanical gating of mechanoelectrical transduction channels, a function generally attributed to the tip link running between the tips of short stereocilia and the sides of adjacent taller ones. However, immunocytochemical experiments indicate that the channels may not be associated with the tip link but occur just below it in a region of contact between the stereocilia. To determine whether transduction channels in this location could be operated during physiologically appropriate deflections as effectively by shear displacement as if they were associated with the tip link, a two dimensional kinematic analysis of relative motion between stereocilia has been performed assuming contact between stereocilia is maintained during deflection. Bundle geometry and dimensions were determined from transmission electron micrographs of hair cells from several frequency locations between 0.27 and 13.00 kHz in the guinea-pig cochlea. The analysis indicates that for a 10 nm deflection of the tallest stereocilia of both inner and outer hair cells, i.e. within the range of the maximum sensitivity of mammalian hair bundles, the average shear displacement in the contact region would be 1.6 nm, but that it increases systematically towards higher frequency regions for outer hair cells. This displacement is comparable in magnitude to tip-link elongation for individual stereociliary pairs.  相似文献   

4.
Biochemical and pharmacological evidence supports a role for nitric oxide (NO) in the cochlea. In the present experiments, we tested sodium nitroprusside (SNP), an NO donor, applied by intracochlear perfusions on sound-evoked responses of the cochlea (CM, cochlear microphonic; SP, summating potential; EP, endocochlear potential; CAP, compound action potential) and in vitro on outer hair cell (OHC) voltage-induced length changes and current responses. In vivo application of SNP in increasing concentrations (10, 33, 100, 330 and 1000 microM) reduced all sound-evoked responses starting at about 300 microM. The responses continued to decline after a postdrug wash. At 1 mM SNP decreased EP slowly (approximately 80 min) whereas at 10 mM it reduced EP more rapidly (approximately 20 min). Ferricyanide (1 mM) and S-nitroso-N-acetylpenicillamine (SNAP; 1 mM) had no effect on sound-evoked cochlear potentials. Ferricyanide (1 mM and 10 mM) and ferrocyanide (10 mM) had no effect on EP. In vitro, SNP (10 mM) significantly reduced both OHC voltage-induced length changes and whole-cell outward currents. Results suggest that SNP, possibly acting by released NO, influences cochlear function through effects at the stria vascularis and at the OHCs.  相似文献   

5.
6.
7.
Removal of functional presynaptic input can result in a variety of changes in postsynaptic neurons in the central nervous system, including altered metabolism, changes in neuronal cell size, and even death of the postsynaptic cell. Age-dependent neuronal cell death and shrinkage has been documented in second order auditory neurons in the chick brainstem (nucleus magnocellularis, NM) following cochlea removal (Born and Rubel, 1985. J. Comp. Neurol. 231, 435-445). Here we examined whether the extent of neuronal cell death and shrinkage is also breed-dependent. We performed unilateral cochlea removal on both hatchling and adult birds of either a broiler breed (Arbor Acres Cross) or egg layer breed (Hy-Line, H and N) and killed birds one week later. Changes in neuronal cell number and cross sectional area were determined from Nissl-stained sections. We observed 25% neuronal cell loss and a 15-20% decrease in neuronal cross sectional area after cochlea removal in either broiler or egg layer hatchling birds. In adult birds, however, neuronal cell loss is breed-dependent. Adult egg layer birds lose an average of 37% of NM neurons after cochlea removal, while adult broiler birds show no cell loss. In both breeds of adult birds, cochlea removal results in a 20% decrease in neuronal cross sectional area. These results suggest that analysis of differences between breeds as well as ages of birds will prove fruitful in determining how afferent input controls neuronal survival and metabolism.  相似文献   

8.
Reactive oxygen species (ROS) have been implicated in the ototoxicity of various agents. This study examines the effects of superoxide anion (O2), hydroxyl radical (OH.) and hydrogen peroxide (H2O2), on isolated cochlear outer hair cell (OHC) morphology. OHCs were superfused with artificial perilymph (AP) or AP containing a specific ROS scavenger, and then with AP, ROS system or scavenger plus ROS system for 90 min. The generation of ROS as well as the scavenging properties of other agents were confirmed by specific biochemical assays. Control cells decreased 4.8% in mean length, and showed no obvious membrane damage. Generation of O2. or OH. resulted in high rates (85.7 and 42.9%, respectively) of bleb formation at the synaptic pole, and decreased (O2., 15.2%; OH., 17.3%) mean cell length. Length change and bleb formation rate were H2O2 concentration-dependent. 20 mM H2O2 led to 33.3% decreased mean cell length, and only 20% bleb formation; 0.1 mM H2O2 led to 83.3% bleb formation, with no length decrease. Superoxide dismutase, deferoxamine and catalase protected against O2., OH. and H2O2 effects, respectively. Bleb formation and diminished cell length likely represent differential lipid peroxidative outcomes at supra- and infranuclear membranes, and are consistent with effects of certain ototoxicants.  相似文献   

9.
Hair cell responses are recorded from third turn of the guinea pig cochlea in order to define the relationship between hair cell depolarization and position of the basilar membrane. Because the latter is determined locally, using the cochlear microphonic recorded in the organ of Corti (OC) fluid space, no corrections are required to compensate traveling wave and/or synaptic delays. At low levels, inner hair cells (IHC) depolarize near basilar membrane velocity to scala vestibuli reflecting the free standing nature of their stereocilia. At high levels, the time of depolarization changes rapidly from velocity to scala vestibuli to the scala tympani phase of the basilar membrane response. This change in response phase, recorded in the fundamental component of the IHC response, is associated with a decrease in response magnitude. The absence of this behavior in OC and outer hair cell responses implies that basilar membrane mechanics may not be responsible for these response patterns. Because these features are reminiscent of the magnitude notches and the large phase shifts observed in single unit responses at high stimulus levels, they provide the IHC correlates of these phenomena.  相似文献   

10.
Toxoplasma antibody serological tests were carried out using the Dye test on sera of pregnant and postpartum Nigerian women to investigate whether there was any association between the levels of antibody titres and the occurrence of stillbirths and congenital malformations. There was a high prevalence of toxoplasma antibodies in the sera of both pregnant and postpartum women. The prevalence rates for the pregnant women ranged from 72.5% to 88.8% with an overall rate of 75.4%; whilst for the postpartum women, the prevalence rates ranged from 75.0% to 94.4% with an overall rate of 80.5%. The toxoplasma antibody titres of the sera from the live-born babies as well as stillbirths and congenitally malformed babies ranged from 1:16 to 1:1024. The exact role played by toxoplasma in the occurrence of stillbirths and congenital malformation in our area of study is, however, not clear. For future research, it is suggested that larger samples be studied in order to enhance the validity of the findings of the present study.  相似文献   

11.
Cochlear frequency selectivity in lower vertebrates arises in part from electrical tuning intrinsic to the sensory hair cells. The resonant frequency is determined largely by the gating kinetics of calcium-activated potassium (BK) channels encoded by the slo gene. Alternative splicing of slo from chick cochlea generated kinetically distinct BK channels. Combination with accessory beta subunits slowed the gating kinetics of alpha splice variants but preserved relative differences between them. In situ hybridization showed that the beta subunit is preferentially expressed by low-frequency (apical) hair cells in the avian cochlea. Interaction of beta with alpha splice variants could provide the kinetic range needed for electrical tuning of cochlear hair cells.  相似文献   

12.
Sound transduction in the inner ear is controlled by olivocochlear efferents terminating predominantly at outer hair cells (OHC). Development of efferent fibers and thereby of postsynaptic OHC receptors was studied immunohistochemically in 13 cochleae from fetal guinea pigs. The gestational ages of the animals ranged from gestational day (GD) 35 to GD 56. To visualize nicotinic acetylcholine receptors (nAChR), sera were used from myasthenia gravis patients with confirmed nAChR antibodies. At GD 53 no staining was observed, whereas at GD 58 a striking nAChR-immunoreactivity was found. In cochleae from adult animals postsynaptic receptors were visualized at the bases of all three rows of OHCs. The region of the inner hair cells (IHC) was not stained. The present results indicate that nAChRs in guinea pig cochleae develop between GD 53 and GD 58. Maturation of the postsynaptic nAChRs coincides with development of OHC motile properties.  相似文献   

13.
The major class of cochlear afferent fibers, the type-I or radial-fiber (RF) population, has been subdivided into three functional groups according to spontaneous discharge rate (SR): those with low SR have the highest acoustic thresholds, high SR fibers have the lowest thresholds and medium SR fibers are of intermediate sensitivity (Liberman [1978] J. Acoust. Soc. Amer. 63:442-455). Existing evidence from intracellular labeling studies at the light microscopic level (Liberman [1982a] Science 216:1239-1241) suggests that a single cochlear inner hair cell makes synaptic contact with representatives of all three functional groups; however, low and medium SR fibers are spatially segregated from high SR fibers around the hair cell circumference, and low and medium SR fibers are smaller in caliber than those with high SR. The present study extends to the ultrastructural level the structure-function correlations available via intracellular labeling. Analysis is based on serial section reconstruction of the synaptic contacts between 11 radial fibers of known SR and their target hair cells. Results suggest systematic differences in synaptic ultrastructure among fibers of the three SR groups: with decreasing SR, the size and complexity of the synaptic body (a presynaptic specialization characteristic of the peripheral afferent synapses in all hair cell systems and some other peripheral receptors) tend to increase, as does the associated number of synaptic vesicles. The possible functional significance of these trends is discussed in the context of other known structural and functional differences among the three SR groups.  相似文献   

14.
The acute effects of cis-platinum on isolated cochlear outer hair cells (OHC) were investigated with whole-cell patch-clamps and measurements of cell length changes. Our findings demonstrated that cis-platinum reversibly induced a hyperpolarization and cellular elongation. These results suggest that the effects produced are the result of an interaction between cis-platinum and transduction channels in OHC. These acute effects are distinctly different from the chronic, irreversible ones that are followed by death of the OHC. The exact mechanism of these chronic effects remains unknown as yet.  相似文献   

15.
The role of the inner hair cells (IHCs) in generating the cochlear summating potentials (SP) was assessed by measuring SP, cochlear nerve action potentials (CAP), cochlear microphonics (CM) and 2f1-f2 distortion product otoacoustic emissions (DPOAEs) in 15 chinchillas with either acute chemical de-afferentation, accomplished by applying kainic acid to the round window, or surgical de-afferentation and basal IHC loss, which developed within two months after sectioning the auditory nerve. In the auditory nerve sectioned ears, type I ganglion cells disappeared whereas most, if not all, type II ganglion cells were still present. Histological analysis of surface preparations and sections through the modiolus verified the de-afferentation in both models and showed a large IHC loss at the base of the cochlea in the ears with the auditory nerve sectioned while other structures of the cochlea remained intact. Unoperated (left) ears of 9 animals served as controls. CM and DPOAEs were normal in all ears whereas the CAP was substantially depressed in de-afferented ears. Comparisons among the SP input-output functions suggest that (1) the IHCs are the major generator of SP recorded from the round window in chinchilla, in particular at low to moderate stimulus levels, (2) the SP recorded from the round window largely reflects the responses from hair cells at the base of the cochlea, and (3) kainic acid results in an increase of SP amplitude to high-level stimuli whereas the SP to low- to moderate-level stimuli remains in the normal range.  相似文献   

16.
Outer hair cells (OHC) of the mammalian cochlea modulate the inner hair cell (IHC) mechanoelectrical transduction of sound. They are contacted by synapsing efferent neurons from the CNS, their main efferent neurotransmitter being acetylcholine (ACh). OHC function and in particular their control of [Ca2+]i is highly important and is modulated by ACh and also by other substances including extracellular (EC) ATP. OHC carry at their efferent synapse a not yet completely identified neuronal type of ionotropic ACh receptor (AChR), with an unusual pharmacology, which is, in vivo and in vitro, reversibly blocked by alpha-bungarotoxin (alpha-bgtx). The AChR mediates a fast influx of Ca2+ into OHC which, in turn, activates a closeby located outwardly-directed Ca(2+)-dependent K(+)-channel, thus shortly hyperpolarizing the cell. A cloned homomeric alpha 9 nAChR mimicks the function and pharmacology of this receptor. We here report results from a study designed to observe only slower effects triggered by EC ATP and the ACh-AChR system. EC presence of ATP at OHC increases [Ca2+]i by activating both P2x and P2y purinoceptors and also by indirect activation of OHC L-type Ca(2+)-channels. The L-type channel activation is responsible for a large part of the [Ca2+]i increase. Simultaneous EC presence of ACh and ATP at OHC was found to depress ATP-induced effects on OHC [Ca2+]i, an effect that is completely blocked in the presence of alpha-bgtx. Our observations suggest that the ACh-AChR system is involved in the modulation of the observed EC ATP-triggered events; possibly the OHC AChR is able to act both in its well known rapid ionotropic way, but also, perhaps after modification in a slower, metabotropic way interfering with the EC ATP-induced [Ca2+]i increase.  相似文献   

17.
This study investigated the organization of cells in the ganglion cell layer (GCL) using Nissl staining, retrograde cell degeneration with axotomy of the optic nerve, and retrograde cell labeling by injections of horseradish peroxidase (HRP) into the optic nerve of chicks (posthatching day 1 and 8, P-1 and P-8). The total number of cells in the GCL was 6.1 x 10(6) (P-1) and 4.9 x 10(6) (P-8), and the cell density was 14,300 cells/mm2 (P-1) and 10,400 cells/ mm2 (P-8) on average. Two high-density areas, the central area (CA) and the dorsal area (DA), were observed in the central and dorsal retinas in both P-1 (22,000 cells/mm2 in CA, 19,000 cells/mm2 in DA) and P-8 chicks (19,000 cells/mm2 in CA, 12,800 cells/mm2 in DA). The cell densities in the temporal periphery (TP) and the nasal (NP) peripheral retinas were 7,800 cells/mm2 and 12,500 cells/mm2, respectively, in P-1 and 5,000 cells/ mm2 and 8,000 cells/mm2, respectively, in P-8 chicks. The cell density in the temporal periphery was 35% (P-8) lower than in the nasal periphery in both P-1 and P-8 chicks. Thirty percent (1.9 x 10(6) cells in P-1) of the total cells in the GCL were resistant to axotomy of the optic nerve. The distribution of the axotomy-resistant cells showed two high-density areas in the central and dorsal retinas, corresponding to the CA (5,800 cells/mm2) and the DA (3,200 cells/mm2). These cells also exhibited a center-peripheral increase (2,200 cells/mm2 in the TP) in P-1 chicks, but the high-density area was not found in the dorsal retina of P-8 chicks. From these data and the HRP study, the number of presumptive ganglion cells in P-8 chicks was estimated to be 4 x 10(6) (8,600 cells/mm2 on average), and the density in each area was 13,500 (CA), 10,200 (DA), and 4,300 (TP) cells/mm2. The peripheral/ center ratios of the density of ganglion cells were significantly different along the nasotemporal and dorsoventral axes. The density of ganglion cells decreased more rapidly toward the temporal periphery (TP/CA ratio: 0.47 in P-1 and 0.32 in P-8) than toward the nasal periphery (NP/CA ratio: 0.67 in P-1 and 0.52 in P-8). In contrast, there was no significant difference in the peripheral/center ratios between the dorsal retina (DP/CA ratio: 0.6 in P-1 and 0.56 in P-8) and ventral retina (VP/CA ratio: 0.58 in P-1 and 0.51 in P-8). A small peak in the density of the presumptive ganglion cells was detected in the dorsal retina of both P-1 chicks (10,800 cells/mm2) and P-8 chicks (10,200 cells/mm2). The HRP-labeled cells were small in the CA (M +/- SD: 35.7 +/- 9.1 microm2) and DA (40.0 +/- 11.3 microm2), and their sizes increased toward the periphery (63.4 +/- 29.7 microm2 in the TP) accompanied by a decrease in the cell density. However, the axotomy-resistant cells did not significantly increase in size toward the peripheral retina (12.2 +/- 2.2 microm2 in the CA, 15.2 +/- 3.2 microm2 in the DA, 15.1 +/- 3.8 microm2 in the TP). The characteristic distribution of ganglion cells could be related to visual behavior based upon the specialization of avian visual fields.  相似文献   

18.
BACKGROUND: Morphine analysis of hair is used in forensic toxicology to study the addiction history of heroin addicts. To clarify the features underlying fatal heroin intake, we measured hair morphine content in a group of deceased heroin addicts, to verify a possible correlation between fatal heroin overdoses and the addiction behaviour of these individuals before death. METHODS: 91 deaths were attributed to heroin overdose in Verona, Italy, in 1993-96. We analysed the hair of 37 of these individuals, and of 37 active heroin addicts, 37 former heroin users abstinent from the drug for several months, and 20 individuals with no evidence of exposure to opioids. From each individual, a hair sample of about 150 mg was analysed by RIA and high-performance liquid chromatography, to measure the morphine content. FINDINGS: The mean morphine content in the hair of the addicts who had died was 1.15 ng/mg (SD 2.35 ng/mg; range 0-12.25 ng/mg) compared with 6.07 ng/mg (4.29; 1.15-17.0) in the active heroin addicts, 0.74 ng/mg (0.93; 0.10-3.32) in the abstinent former addicts, and values below the detection limit in the non-exposed group. Hair morphine content among those who had died was significantly lower than that in active heroin consumers (p<.00001), but not significantly different from that in the former addicts (p=0.978). INTERPRETATION: Although our findings may be subject to selection bias, since suitable hair samples were available for only 37 of the 91 addicts who had died, these findings support the theory of high susceptibility to opioid overdose after periods of intentional or unintentional abstinence, due to loss of tolerance. Medical staff running detoxification programmes should be aware of the risk inherent in relapse to heroin after a period of abstinence. Moreover, occasional heroin use without a build-up of tolerance could also give a high risk of overdose.  相似文献   

19.
20.
Rats were trained by treadmill running after chemical sympathectomy with 6-hydroxy-dopamine or during chronic beta receptor blockade. Contrary to untreated trained animals, sympathectomized rats did not get a reduction of the intrinsic heart rate after training despite an increased heart weight. In contrast, no cardiac hypertrophy occurred after training during beta adrenergic blockade but the heart rate during exercise was reduced in these animals. It is concluded that the training-induced bradycardia contains a lowering of the intrinsic heart rate and that this is not dependent on the stimulation of cardiac beta receptors or the magnitude of heart rate increase during exercise. The results also indicate that there is not a causal relationship between the training-induced bradycardia and cardiac hypertrophy. The latter conclusion is supported by an echocardiographic study in humans where no correlation was found between IHR and cardiac dimensions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号