共查询到20条相似文献,搜索用时 0 毫秒
1.
Maryam RIAZ;Shazia BASHIR;Asma HAYAT;Zarish NAZ 《等离子体科学和技术》2023,25(3):035508-035508
This study deals with the investigation of Nd: YAG laser-assisted ablation and plasma formation of Ti at irradiance of 0.85 GW cm-2 under Ar and Ne environment at various pressures ranging from 10–120 Torr. Laser-induced breakdown spectroscopy is used to evaluate plasma parameters, whereas quartz crystal microbalance is used for ablation yield measurements. The crater depth is evaluated by optical microscopy. The surface features are explored by scanning electron microscope (SEM) analysis and the micro-hardness is measured by a Vickers hardness tester. It is observed that the plasma parameters are higher in Ar than in Ne, and are strongly correlated with the ablation yield, ablation depth, surface features and hardness of laser-ablated Ti. These parameters increase with increasing the pressure of environmental gases, attain their maxima at 40 Torr for Ar and at 60 Torr for Ne. Afterwards, they show a decreasing trend up till a maximum pressure of 120 Torr. The maximum value of the electron temperature (T e) is 5480 K, number density (n e) is ablation depth is ablation yield is atoms/pulse and hardness is 300 HV in the case of Ar atmosphere. SEM analysis reveals the growth of surface features, such as cones, ridges and pores, whose appearance is more distinct in Ar than Ne and is attributed to temperature, pressure and density gradients along with recoil pressure of the Ti plasma. 相似文献
2.
In this work,we studied the effects of the discharge current,gas flow rate and vessel pressure on the electron temperature and density of Ar plasma by Langmuir probe measurement.The argon plasma was created by a one-cathode arc source.The experimental results show that with increasing discharge current and gas flow rate,the electron temperature and density increase.It is found that when the discharge current is 70 A,90 A and HO A at an argon flow rate of2000 seem,the electron densities at about 0.186 m distance from the nozzle are 13.00×10~(18) m~(-3),14.04×10~(18) m~(-3) and 15.62×10~(18) m~(-3),and the electron temperatures are 0.38 eV,0.58 eV and0.71 eV,respectively.The positive I-V characteristic is explained. 相似文献
3.
When an electromagnetic (EM) wave propagates in an atmospheric pressure plasma (APP) layer, its attenuation depends on the APP parameters such as the layer width, the electron density and its profile and collision frequency between electrons and neutrals. This paper proposes that a combined parameter -the product of the line average electron density n and width d of the APP layer (i.e., the total number of electrons in a unit volume along the wave propagation path) can play a more explicit and decisive role in the wave attenuation than any of the above individual parameters does. The attenuation of the EM wave via the product of n and d with various collision frequencies between electrons and neutrals is presented. 相似文献
4.
采用光谱仪测量了等离子体点火器出口射流的发射光谱,利用玻尔兹曼曲线斜率法计算了射流的电子温度,并通过电离平衡方程计算了射流气体温度,获得点火器出口射流长度、射流速度、电子温度和射流温度随弧电流及进口氩气流量的变化规律。并分析了航空等离子体电弧射流中是否可使用电子温度来代替射流气体温度。实验表明:弧电流随着进口氩气流量的增大而减小;出口射流长度和速度随弧电流的增大而增大,随进口氩气流量的增大先增大后减小;出口电子温度、电子密度和射流温度随弧电流的增大而升高,随氩气流量的增大而降低。 相似文献
5.
We studied the spatial evolution of the Fe-Ni plasma generated by the fundamental (1064 nm) and second (532 nm) harmonics of a Q-switched Nd: YAG laser. The experimentally observed line profiles of the neutral iron (Fe I) have been used to extract the plasma temperature (T e ) using the Boltzmann plot method, whereas the electron number density (N e ) has been deter- mined from the Stark broadening. In addition, we studied the spatial behavior of T e and N e with the variation of laser energy for iron plasma by placing the target material (iron-nickel alloy) in air at atmospheric pressure for both modes of the Nd: YAG laser. 相似文献
6.
Wenjin ZHANG 《等离子体科学和技术》2022,24(2):25403
The coaxial surface wave linear plasma with preeminent axial uniformity is developed with the 2.45 GHz microwave generator. By optical emission spectroscopy, parameters of the argon linear plasma with a length over 600 mm are diagnosed under gas pressure of 30 and 50 Pa and different microwave powers. The spectral lines of argon and Hβ (486.1 nm) atoms in excited state are observed for estimating electron excitation temperature and electron density. Spectrum bands in 305–310 nm of diatomic OH (${{rm{A}}}^{2}{{rm{Sigma }}}^{+}-{{rm{X}}}^{2}{{rm{Pi }}}_{{rm{i}}}$) radicals are used to determine the molecule rotational temperature. Finally, the axial uniformity of electron density and electron excitation temperature are analyzed emphatically under various conditions. The results prove the distinct optimization of compensation from dual powers input, which can narrow the uniform coefficient of electron density and electron excitation temperature by around 40% and 22% respectively. With the microwave power increasing, the axial uniformity of both electron density and electron excitation temperature performs better. Nevertheless, the fluctuation of electron density along the axial direction appeared with higher gas pressure. The axial uniformity of coaxial surface wave linear plasma could be controlled by pressure and power for a better utilization in material processing. 相似文献
7.
Laser-induced steel plasma is generated by focusing a Q-switched Nd:YAG visible laser(532 nm wavelength) with an irradiance of 1 x 109 W/cm2 on a steel sample in air at atmospheric pressure.An Echelle spectrograph coupled with a gateable intensified charge-coupled detector is used to record the plasma emissions.Using time-resolved spectroscopic measurements of the plasma emissions,the temperature and electron number density of the steel plasma are determined for many times of the detector delay.The validity of the assumption by the spectroscopic methods that the laser-induced plasma(LIP) is optically thin and is also in local thermodynamic equilibrium(LTE) has been evaluated for many delay times.From the temporal evolution of the intensity ratio of two Fe I lines and matching it with its theoretical value,the delay times where the plasma is optically thin and is also in LTE are found to be 800 ns,900 ns and 1000 ns. 相似文献
8.
Zeyu HAO 《等离子体科学和技术》2019,21(7):75401-118
The effects of driving frequency on plasma parameters and electron heating efficiency are studied in cylindrical inductively coupled plasma (ICP) source. Measurements are made in an Ar discharge for driving frequency at 13.56/2 MHz, and pressures of 0.4–1.2 Pa. In 13.56 MHz discharge, higher electron density (ne) and higher electron temperature (Te) are observed in comparison with 2 MHz discharge at 0.6–1.2 Pa. However, slightly higherne andTe are observed in 2 MHz discharge at 0.4 Pa. This observation is explained by enhanced electron heating efficiency due to the resonance between the oscillation of 2 MHz electromagnetic field and electron-neutral collision process at 0.4 Pa. It is also found that the variation ofTe distribution is different in 13.56 and 2 MHz discharge. For ICP at 13.56 MHz, Te shows an edge-high profile at 0.4–1.2 Pa. For 2 MHz discharge,Te remains an edge-high distribution at 0.4–0.8 Pa. However, the distribution pattern involves into a center-high profile at 0.9–1.2 Pa. The spatial profiles ofne remain a center-high shape in both 13.56 and 2 MHz discharges, which indicates the nonlocal kinetics at low pressures. Better uniformity could be achieved by using 2 MHz discharge. The effects of gas pressure on plasma parameters are also examined. An increase in gas pressure necessitates the rise ofne in both 13.56 and 2 MHz discharges. Meanwhile, Te drops when gas pressure increases and shows a flatter distribution at higher pressure. 相似文献
9.
As advanced linear plasma sources, cascaded arc plasma devices have been used to generate steady plasma with high electron density, high particle flux and low electron temperature. To measure electron density and electron temperature of the plasma device accurately, a laser Thomson scattering(LTS) system, which is generally recognized as the most precise plasma diagnostic method, has been established in our lab in Dalian University of Technology. The electron density has been measured successfully in the region of 4.5?×?10(19)m~(-3) to7.1?×?10~(20)m~(-3) and electron temperature in the region of 0.18 eV to 0.58 eV. For comparison,an optical emission spectroscopy(OES) system was established as well. The results showed that the electron excitation temperature(configuration temperature) measured by OES is significantly higher than the electron temperature(kinetic electron temperature) measured by LTS by up to 40% in the given discharge conditions. The results indicate that the cascaded arc plasma is recombining plasma and it is not in local thermodynamic equilibrium(LTE). This leads to significant error using OES when characterizing the electron temperature in a non-LTE plasma. 相似文献
10.
This work reports spectroscopic studies of uranium containing plasma generated in air and argon environments. The 532 nm Q-switched Nd:YAG laser generates the optical breakdown plasma, which was recorded by a spectrometer and an intensified charge coupled device having a resolution of 25 pm. Neutral and ionized uranium lines in the wavelength range of 385.8–391.9 nm indicate significant width and shift variations during the first few microseconds. Electron temperature and density of the plasma are determined using the Boltzmann plot and the Saha–Boltzmann equation at various time delay. The study reveals the power law decay pattern of electron temperature and density, which changes to exponential decay pattern if large gate- width is used to acquire the signal, due to an averaging effect. 相似文献
11.
The electronic excitation temperature of a surface dielectric barrier discharge (DBD) at atmospheric pressure has been experimentally investigated by optical emission spectroscopic measurements combined with numerical simulation. Experiments have been carried out to deter- mine the spatial distribution of electric field by using FEM software and the electronic excitation temperature in discharge by calculating ratio of two relative intensities of atomic spectral lines. In this work, we choose seven Ar atomic emission lines at 415.86 nm [(3s^23p^5)5p →(3s^23p^5)4s] and 706.7 nm, 714.7 nm, 738.4 nm, 751.5 nm, 794.8 nm and 800.6 nm [(3s^23p^5)4p → (3s^23p^5)4s] to estimate the excitation temperature under a Boltzmann approximation. The average electron energy is evaluated in each discharge by using line ratio of 337.1 nm (N2(C^3Пu →B3Пg)) to 391.4 nm (N2^+(B2 ∑u^+→ ∑g^+)). Furthermore, variations of the electronic excitation tempera- ture are presented versus dielectric thickness and dielectric materials. The discharge is stable and uniform along the axial direction, and the electronic excitation temperature at the edge of the copper electrode is the largest. The corresponding average electron energy is in the range of 1.6- 5.1 eV and the electric field is in 1.7-3.2 MV/m, when the distance from copper electrode varies from 0 cm to 6 cm. Moreover, the electronic excitation temperature with a higher permittivity leads to a higher dissipated electrical power. 相似文献
12.
Shuqun WU 《等离子体科学和技术》2020,22(11):115402-115402
In order to demonstrate the modulation of terahertz wave propagation in atmospheric pressuremicroplasmas, in this work, the band structure and the transmission characteristics of a onedimensionalcollisional microplasma photonic crystal are investigated, using the transfer matrixmethod. For a lattice constant of 150 μm and a plasma width of 100 μm, three stopbands ofmicroplasma photonic crystal are observed, in a frequency range of 0.1–5 THz. Firstly, anincrease in gas pressure leads to a decrease in the central frequency of the stopband. When thegas pressure increases from 50.5 kPa to 202 kPa, the transmission coefficient of the THz wavefirst increases and then decreases at high frequency, where the wave frequency is much greaterthan both the plasma frequency and the collision frequency. Secondly, it is interesting to find thatthe central frequency and the bandwidth of the first THz stopband remain almost unchanged forelectron densities of less than 1015 cm–3, increasing significantly when the electron densityincreases up to 1016 cm–3. A central frequency shift of 110 GHz, and a bandgap broadening of200 GHz in the first stopband are observed. In addition, an atmospheric pressure microplasmawith the electron density of 1 × 1015–6 × 1015 cm–3 is recommended for the modulation of THzwave propagation by plasma photonic crystals. 相似文献
13.
《等离子体科学和技术》2016,18(9):902-906
The spectral emission and plasma parameters of SnO_2 plasmas have been investigated.A planar ceramic SnO_2 target was irradiated by a CO2 laser with a full width at half maximum of 80 ns.The temporal behavior of the specific emission lines from the SnO_2 plasma was characterized.The intensities of Sn I and Sn II lines first increased,and then decreased with the delay time.The results also showed a faster decay of Sn I atoms than that of Sn II ionic species.The temporal evolutions of the SnO_2 plasma parameters(electron temperature and density) were deduced.The measured temperature and density of SnO_2 plasma are 4.38 eV to0.5 eV and 11.38×10~(17) cm~(-3) to 1.1×10~(17) cm~(-3),for delay times between 0.1 μs and 2.2 μs.We also investigated the effect of the laser pulse energy on SnO_2 plasma. 相似文献
14.
PTFE表面辐照改性研究进展 总被引:1,自引:0,他引:1
聚四氟乙烯(PTFE)是一种具有润滑、绝缘及化学惰性的工程塑料,被广泛地用于电子、化工、纺织、医疗、机械、环境等领域。由于C—F键能高以及氟原子规整地排列在C—C链骨架上,因此PTFE表面能极低且表面润湿性和粘结性差,需要进行表面改性以增强PTFE与其它材料的界面亲和性。通过伽马射线/电子束和低温等离子体对PTFE进行辐照接枝改性和功能化修饰,能够有效地改善和优化其表面性能,使PTFE材料得到更好的利用。低温等离子体技术尤其适合PTFE表面改性处理,因为它不会导致PTFE本体材料的降解。本文综述了国内外关于PTFE表面辐照改性及应用的研究进展。 相似文献
15.
Determination of the negative ion number density of O~-_2and O~-in a DC discharge of oxygen plasma was made employing Langmuir probe in conjunction with eclipse laser photodetachment technique.The temporal evolution of the extra electrons resulting from the photodetachment of O~-_2and O~-were used to evaluate the negative ion number density.The ratio of O~-_2number density to O~-varied from 0.03 to 0.22.Number density of both O~-_2and O~-increased with increasing power and decreased as the pressure was increased.Electron number density was evaluated from the electron energy distribution function(EEDF)using the I–V recorded characteristic curves.Electron temperature between 2 and 2.7 eV were obtained.Influence of the O_2(a~1Δ_g)metastable state is discussed. 相似文献
16.
Filtered cathodic vacuum arc (FCVA) deposition is regarded as an important technique for the synthesis of tetrahedral amorphous carbon (ta-C) films due to its high ionization rate, high deposition rate and effective filtration of macroparticles. Probing the plasma characteristics of arc discharge contributes to understanding the deposition mechanism of ta-C films on a microscopic level. This work focuses on the plasma diagnosis of an FCVA discharge using a Langmuir dual-probe system with a discrete Fourier transform smoothing method. During the ta-C film deposition, the arc current of graphite cathodes and deposition pressure vary from 30 to 90 A and from 0.3 to 0.9 Pa, respectively. The plasma density increases with arc current but decreases with pressure. The carbon plasma density generated by the arc discharge is around the order of 1010 cm−3. The electron temperature varies in the range of 2‒3.5 eV. As the number of cathodic arc sources and the current of the focused magnetic coil increase, the plasma density increases. The ratio of the intensity of the D-Raman peak and G-Raman peak (I D/I G) of the ta-C films increases with increasing plasma density, resulting in a decrease in film hardness. It is indicated that the mechanical properties of ta-C films depend not only on the ion energy but also on the carbon plasma density. 相似文献
17.
ZHOU Shengguo 《等离子体科学和技术》2016,18(6):607-610
Radar echoes intensity of polar mesosphere summer echoes(PMSE) is greatly affected by the temperature of dusty plasma and the frequency of electromagnetic wave about the radar.In this paper,a new method is developed to explain the active experiment results of PMSE.The theory of wave propagation in a layered media is used to study the propagation characteristics of an electromagnetic wave at different electron temperatures.The simulation results show that the variation tendency of the reflected power fraction almost agrees with the results observed by radar in the European Incoherent Scatter Scientific Association(EISCAT).The radar echoes intensity of PMSE greatly decreases with the increase of the radio frequency and the enhancement of the electron temperature. 相似文献
18.
A low power atmospheric pressure plasma jet driven by a 24 kHz AC power source and operated with a CH_4/air gas mixture has been investigated by optical emission spectrometer.The plasma parameters including the electron excitation temperature,vibrational temperature and rotational temperature of the plasma jet at different discharge powers are diagnosed based on the assumption that the kinetic energy of the species obeys the Boltzmann distribution.The electron density at different power is also investigated by H_β Stark broadening.The results show that the plasma source works under non-equilibrium conditions.It is also found that the vibrational temperature and rotational temperature increase with discharge power,whereas the electron excitation temperature seems to have a downward trend.The electron density increases from 0.8×10~(21) m~(-3) to 1.1×10~(21)m~(-3) when the discharge power increases from 53 W to 94 W. 相似文献
19.
Due to the growing interest in studying the compression and disruption of the plasma filament in magnetic fusion devices and Z-pinches, this work may be important for new developments in the field of controlled thermonuclear fusion. Recently, on a coaxial plasma accelerator, we managed to obtain the relatively long-lived (∼300 μs) plasma filaments with its self-magnetic field. This was achieved after modification of the experimental setup by using high-capacitive and low-inductive energy storage capacitor banks, as well as electrical cables with low reactive impedance. Furthermore, we were able to avoid the reverse reflection of the plasma flux from the end of the plasma accelerator by installing a special plasma-absorbing target. Thus, these constructive changes of the experimental setup allowed us to investigate the physical properties of the plasma filament by using the comprehensive diagnostics including Rogowski coil, magnetic probes, and Faraday cup. As a result, such important plasma parameters as density of ions and temperature of electrons in plasma flux, time dependent plasma filament's azimuthal magnetic field were measured in discharge gap and at a distance of 23.5 cm from the tip of the cathode. In addition, the current oscillograms and I–V characteristics of the plasma accelerator were obtained. In the experiments, we also observed the charge separation during the acceleration of plasma flow via oscillograms of electron and ion beam currents. 相似文献
20.
The plasma shielding effect is one of the major weaknesses of laser-induced breakdown spectroscopy(LIBS) as it causes non-linearity in signal strength. Although LIBS is typically carried out in constant laser energy, this non-linearity causes a reduction in sensitivity. In this work, we systematically examine laser-induced plasma, formed by two different excitation source modes, i.e. single pulse(SP)-excitation and single-beam-splitting double-pulse(SBSDP)-excitation over Zr-2.5% Nb alloy. The two most important plasma parameters influencing the emission line intensity, plasma temperature(T_e) and electron density(N_e) were studied and compared for both modes of laser excitation. Comparison of the results conclusively demonstrates that due to the splitting of the laser energy in the SBS-DP mode, the plasma shielding effect is significantly reduced. The reduced plasma shielding translates to an increased laser–sample coupling under SBS-DP mode. Temporal imaging of the total intensity of the laserinduced plasma in both excitation modes was also studied. The study shows how the plasma shielding effect can be reduced to improve the analytical quality of the LIBS methodology. 相似文献