首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A novel surface wave plasma(SWP) source excited with cylindrical Teflon waveguide has been developed in our previous work. The plasma characteristics have been simply studied.In this work, our experimental device has been significantly improved by replacing the Teflon waveguide with a quartz rod, and then better microwave coupling and higher gas purity can be obtained during plasma discharge. The plasma spatial distributions, both in radial and axial directions, have been measured and the effect of gas pressure has been investigated. Plasma density profiles indicate that this plasma source can produce uniform plasma in an axial direction at low pressure, which shows its potential in plasma processing on a curved surface such as an inner tube wall. A simplified circular waveguide model has been used to explain the principle of plasma excitation. The distinguishing features and potential application of this kind of plasma source with a hardware improvement have been shown.  相似文献   

2.
A novel plasma limiter, in which the plasma is excited by surface wave, is presented. The breakdown time of some gases filled in the limiter were calculated as a function of gas pres- sure, ionization degree and density of seed electrons under low pressure (0.01 -1 Torr) and high pressure (10 -1000 Torr) cases. The results show that the limiter filled with Xe with a pressure of 0.9 Torr, seed electron density of 10^16 m^-3, and ionization degree of 10^-4, has a breakdown time of approximate 19.6 ns.  相似文献   

3.
When an electromagnetic (EM) wave propagates in an atmospheric pressure plasma (APP) layer, its attenuation depends on the APP parameters such as the layer width, the electron density and its profile and collision frequency between electrons and neutrals. This paper proposes that a combined parameter -the product of the line average electron density n and width d of the APP layer (i.e., the total number of electrons in a unit volume along the wave propagation path) can play a more explicit and decisive role in the wave attenuation than any of the above individual parameters does. The attenuation of the EM wave via the product of n and d with various collision frequencies between electrons and neutrals is presented.  相似文献   

4.
Propagation of the surface waves along a two-dimensional plasma column and the far-field radiation patterns are studied in thin column approximation. Wave phase and attenuation coefficients are calculated for various plasma parameters. The radiation patterns are shown. Results show that the radiation patterns are controllable by flexibly changing the plasma length and other parameters in comparison to the metal monopole antenna. It is meaningful and instructional for the optimization of the plasma antenna design.  相似文献   

5.
This paper focuses on the application of plasma as wireless antenna. In order to reveal the radiation characteristics of column plasma antenna, we chose the finite-difference time- domain (FDTD) numerical analysis method to simulate radiation impedance and efficiencies of each channel for a few sets of plasma densities and plasma collision frequencies. Simulation results demonstrate that a plasma antenna shares similar characteristics with a metallic antenna in radiation impedance and efficiency of each channel when an appropriate setting is adopted. Unlike a metallic antenna, a plasma antenna is capable of realizing such functions as dynamic reconfiguration, digital control and dual-channel communication. Thus it is possible to carry out dual-channel communication by plasma antenna, indicating a new path for modern intelligent communication.  相似文献   

6.
The rod pinch diode is perfect as a source of accelerators for flash X-ray radiography by virtue of a small and stable spot.But it is not suitable for intensive current drivers because of high diode impendence of 40~60Ω.However,by employing pre-filled plasma into diode prior to the driving current,the diode impendence can be efectively reduced.Plasma density plays an important role in this process,especially for sheath formation and space charge current in the diode.Analysis and simulation results show that a proper range of plasma density could be 1015~1016cm-3.  相似文献   

7.
Influence of plasma actuators as a flow separation control device was investigated experimentally. Hump model was used to demonstrate the effect of plasma actuators on external flow separation, while for internal flow separation a set of compressor cascade was adopted. In order to investigate the modification of the flow structure by the plasma actuator, the flow field was examined non-intrusively by particle image velocimetry measurements in the hump model experiment and by a hot film probe in the compressor cascade experiment. The results showed that the plasma actuator could be effective in controlling the flow separation both over the hump and in the compressor cascade when the incoming velocity was low. As the incoming velocity increased, the plasma actuator was less effective. It is urgent to enhance the intensity of the plasma actuator for its better application. Methods to increase the intensity of plasma actuator were also studied.  相似文献   

8.
Axial propagation characteristics of the axisymmetric surface wave along the plasma in the medium tube were studied. The expressions of electromagnetic field inside and outside the medium tube were deduced. Also, the impacts of several factors, such as plasma density, signal frequency, inner radius of medium tube, collision frequency, etc., on plasma surface wave propa- gation were numerically simulated. The results show that, the properties of plasma with higher density and lower gas pressure are closer to those of metal conductor. Furthermore, larger radius of medium tube and lower signal frequency are better for surface wave propagation. However, the effect of collision frequency is not obvious. The optimized experimental parameters can be chosen as the plasma density of about 10^17 m^-3 and the medium radius between 11 mm and 19 mm.  相似文献   

9.
Along with the introduction of the concept of dual-channel communication,we utilized the finite-difference time-domain(FDTD) method to simulate and measure the radiation pattern under certain plasma densities and plasma collision frequencies.Results show that under certain settings,the radiation pattern of a plasma antenna resembles that of a metallic antenna.In contrast to a metallic antenna,a plasma antenna possesses other functionalities,such as dynamic reconfiguration and digital controllability.The data from simulation are similar to the measurement results,indicating that column plasma antenna can realize dual-channel communication.This work confirms the viability of realizing dual-channel communication by column plasma antenna,which adds a new but promising method for modern intelligent communication.  相似文献   

10.
The electronic excitation temperature of a surface dielectric barrier discharge (DBD) at atmospheric pressure has been experimentally investigated by optical emission spectroscopic measurements combined with numerical simulation. Experiments have been carried out to deter- mine the spatial distribution of electric field by using FEM software and the electronic excitation temperature in discharge by calculating ratio of two relative intensities of atomic spectral lines. In this work, we choose seven Ar atomic emission lines at 415.86 nm [(3s^23p^5)5p →(3s^23p^5)4s] and 706.7 nm, 714.7 nm, 738.4 nm, 751.5 nm, 794.8 nm and 800.6 nm [(3s^23p^5)4p → (3s^23p^5)4s] to estimate the excitation temperature under a Boltzmann approximation. The average electron energy is evaluated in each discharge by using line ratio of 337.1 nm (N2(C^3Пu →B3Пg)) to 391.4 nm (N2^+(B2 ∑u^+→ ∑g^+)). Furthermore, variations of the electronic excitation tempera- ture are presented versus dielectric thickness and dielectric materials. The discharge is stable and uniform along the axial direction, and the electronic excitation temperature at the edge of the copper electrode is the largest. The corresponding average electron energy is in the range of 1.6- 5.1 eV and the electric field is in 1.7-3.2 MV/m, when the distance from copper electrode varies from 0 cm to 6 cm. Moreover, the electronic excitation temperature with a higher permittivity leads to a higher dissipated electrical power.  相似文献   

11.
Experiments on lower hybrid wave(LHW)coupling were investigated in the HT-7 tokamak.Good coupling of LHW plasma has been demonstrated at different conditions in the HT-7 tokamak.Relevant results have proved that LHW-plasma coupling is affected by the phase difference between adjacent waveguides.Furthermore,the edge density around the grill and relevant coupling can be adjusted by changing the plasma line average density or the gap value between the LH grill and the last closed flux surfaces(LCFS).It is found that the coupling of LHWs becomes poor when the edge density around the LH grill is large enough in the HT-7tokamak,and that coupling remains good with a proper edge density.With increasing LHW power,it is also found that the reflection coefficients(RCs)increase due to non-linear effects under conditions of low edge recycling,but can decrease under high edge recycling.The edge density depends mainly on the competition between the ponderomotive force(PMF)and the edge recycling intensity in the HT-7 tokamak.  相似文献   

12.
《等离子体科学和技术》2016,18(10):1005-1011
The surface dielectric barrier discharge(SDBD) plasma actuator has shown great promise as an aerodynamic flow control device. In this paper, the encapsulated electrode width of a SDBD actuator is changed to study the airflow acceleration behavior. The effects of encapsulated electrode width on the actuator performance are experimentally investigated by measuring the dielectric layer surface potential, time-averaged ionic wind velocity and thrust force. Experimental results show that the airflow velocity and thrust force increase with the encapsulated electrode width. The results can be attributed to the distinct plasma distribution at different encapsulated electrode widths.  相似文献   

13.
A novel method is proposed for treating cylindrical probe characteristics to obtain plasma density. The method consists of exponential extrapolation of the transitional part of the I -V curve to the floating potential for the ion saturation current, other than the existing theories which use the ion branch, and an iterative sheath thickness correction procedure for improved accuracy. The method was tested by treating Langmuir probe I-V characteristics obtained from inductively coupled Ar discharges at various pressures, and comparing the present results with those deduced by existing theories. It was shown that the plasma densities obtained by the present method are in good agreement with those calculated by the Allen-Boyd-Reynolds (ABR) theory, suggesting the effectiveness of the proposed method. Without need of manual setting and adjustment of fitting parameters, the method may be suitable for automatic and real time processing of probe characteristics.  相似文献   

14.
In this paper, the calculated results about the propagation properties of electromag-netic wave in a plasma slab are described. The relationship of the propagation properties with frequencies of electromagnetic wave, and parameters of plasma (electron temperature, electron density, dimensionless collision frequency and the size of the plasma slab) is analyzed.  相似文献   

15.
棒束通道温度场可视化实验研究   总被引:1,自引:0,他引:1  
基于激光诱导荧光技术,对带定位格架棒束通道的温度场进行了可视化实验研究。采用折射率匹配技术,搭建可视化实验系统,提出适用于棒束通道温度场点对点标定的关系式,利用此关系式对定位格架下游温度场进行了重构。实验结果显示,采用激光诱导荧光技术可获得定位格架下游全场温度分布。分析了不同加热形式、流量和热流密度对温度分布的影响,并采用轴向流体温差和温度分布不均匀性定量评价了定位格架下游的搅混能力。在定位格架下游0~4Dh范围内,搅混性能逐渐增大,在4Dh后会随高度的增加逐渐减小。结果表明,激光诱导荧光技术可适用于棒束通道温度场的非介入式、全场测量,有助于对相应程序的验证和定位格架搅混性能的评价。  相似文献   

16.
An experimental investigation on airfoil (NACA64-215) shock control is performed by plasma aerodynamic actuation in a supersonic tunnel (Ma -= 2). The results of schlieren and pressure measurement show that when plasma aerodynamic actuation is applied, the position moves forward and the intensity of shock at the head of the airfoil weakens. With the increase in actuating voltage, the total pressure measured at the head of the airfoil increases, which means that the shock intensity decreases and the control effect increases. The best actuation effect is caused by upwind-direction actuation with a magnetic field, and then downwind-direction actuation with a magnetic field, while the control effect of aerodynamic actuation without a magnetic field is the most inconspicuous. The mean intensity of the normal shock at the head of the airfoil is relatively decreased by 16.33%, and the normal shock intensity is relatively reduced by 27.5% when 1000 V actuating voltage and upwind-direction actuation are applied with a magnetic field. This paper theoretically analyzes the Joule heating effect generated by DC discharge and the Lorentz force effect caused by the magnetic field. The discharge characteristics are compared for all kinds of actuation conditions to reveal the mechanism of shock control by plasma aerodynamic actuation.  相似文献   

17.
In order to develop a more economical pretreatment method for electroless nickel plating, a dielectric barrier discharge (DBD) plasma at atmospheric pressure was used to improve the hydrophilicity and adhesion of poly (ethylene terephthalate) (PET) nonwoven fabric. The properties of the PET nonwoven fabric including its liquid absorptive capacity (WA), aging behavior, surface chemical composition, morphology of the surface, adhesion strength, surface electrical resistivity and electromagnetic interference (EMI)- shielding effectiveness (SE) were studied. The liquid absorptive capacity (WA) increased due to the incorporation of oxygen-containing and nitrogen-containing functional groups on the surface of PET nonwoven fabric after DBD air-plasma treatment. The surface morphology of the nonwoven fibers became rougher after plasma treatment. Therefore, the surface was more prone to absorb tin sensitizer and palladium catalyst to form an active layer for the deposition of electroless nickel. SEM and X-ray diffraction (XRD) measurements indicated that a uniform coating of nickel was formed on the PET nonwoven fabric. The average EMI-SE of Ni-plating of PET nonwoven fabric maintained a relatively stable value (38.2 to 37.3 dB) in a frequency range of 50 to 1500 MHz. It is concluded that DBD is feasible for pretreatment of nonwoven fabric for electroless nickel plating to prepare functional material with good EMI-SE properties.  相似文献   

18.
Electron density (Ne) in a glow discharge plasma for the surface alloying technique is diagnosed by optical emission spectrometry (OES). With CH4 as the feeding gas, Ne is obtained by comparing the Hβ spectrum according to the Stark broadening effect. It is noticed that Ne varies with the working pressures (30 Pa to 70 Pa) and cathode voltages (500 V to 1000 V), respectively. Due to an abnormal glow discharge, Ne is between 1. 71 × 10^15 /cm^3 to 6.64 × 10^15 /cm^3 and increases rapidly with working gas pressures and cathode voltages. The results show that OES is a useful method to measure the plasma parameters in a surface alloying glow discharge plasma.  相似文献   

19.
Improvement of polytetrafluoroethylene surface energy by non-thermal plasma treatment is presented, using a nanosecond-positive-edge repetitive pulsed dielectri...  相似文献   

20.
Plasma surface modification of the inner wall of a slender tube is quite difficult to achieve using conventional means. In the work described here, an inner coaxial radio frequency (RF) copper electrode is utilized to produce the plasma and also acts as the sputtered target to deposit copper films in a tube. The influence of RF power, gas pressure, and bias voltage on the distribution of plasma density and the uniformity of film thickness is investigated. The experimental results show that the plasma density is higher at the two ends and lower in the middle of the tube. A higher RF power and pressure as well as larger tube bias lead to a higher plasma density. Changes in the discharge parameter only affect the plasma density uniformity slightly. The variation in the film thickness is consistent with that of the plasma density along the tube axis for different RF power and pressure. Although the plasma density increases with higher tube biases, there is an optimal bias to obtain the highest deposition rate. It can be attributed to the reduction in self-sputtering of the copper electrode and re-sputtering effects of the deposited film at higher tube biases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号