首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 343 毫秒
1.
以Al2O3、Si3N4、BN、SiO2和AlN五种无机填料作为环氧树脂(EP)灌封胶的导热填料,研究了填料的种类、粒径大小和颗粒形态等对EP灌封胶热导率的影响。结果表明:EP灌封胶的热导率随着导热填料用量的增加而增大;当φ(BN)=35%(相对于总体积而言)时,相对最大热导率为2.12 W/(m·K),其值约为EP基体的10倍。填料粒子的几何特征对EP灌封胶的导热性能具有较大的影响;当Al2O3粒径为48μm时,EP灌封胶的相对最大热导率为1.3 W/(m·K);填料粒子过大或过小都会降低EP灌封胶的导热性能。层片状填料粒子可以获得较大的堆积密度,在EP灌封胶中能有效形成导热通道,增加其热导率。  相似文献   

2.
以多壁碳纳米管(MWCNTs)和石墨烯纳米微片(GNs)为导热填料,环氧树脂(EP)为基体采用溶剂和超声分散法,制备了EP/GNs/MWCNTs导热复合材料,并与EP/MWCNTs及EP/GNs复合材料的导热性能进行了对比。采用透射电子显微镜观察其微观结构,采用Hot Disk热导率测试仪测试其导热性能,采用差示扫描量热法和热重分析仪测试其耐热性及热稳定性。结果表明,MWCNTs和GNs共同作为EP导热填料时,相比于单组分填料(MWCNTs或GNs)更易形成导热网络;EP的热导率、玻璃化转变温度(Tg)和热分解温度均随着MWCNTs或GNs含量的增加而提高,其中,GNs更有利于提高EP的热导率和热分解温度,MWCNTs更有利于提高EP的Tg。在相同的导热填料含量下,相对于其中的任一单一填料,MWCNTs/GNs共同作用时,对热导率的提高有更显著的效果,且随着其中GNs比例的增加,热导率逐渐增大。当GNs和MWCNTs的体积分数分别为0.6%和0.4%时,EP/GNs/MWCNTs复合材料的热导率、Tg和起始分解温度分别为0.565 W/(m·K),152℃和316℃,分别比纯EP提高了132.5%,34.5%和8.2%。  相似文献   

3.
环氧树脂/玻璃布/BN导热复合材料的制备与性能研究   总被引:1,自引:0,他引:1  
采用高温模压成型法制备环氧树脂(EP)/玻璃布/氮化硼(BN)导热复合材料。探讨了BN用量和偶联剂处理对复合材料力学性能、导热性能和介电性能等影响。结果表明:当w(BN)=15%时,复合材料的冲击强度较高;导热性能随着BN用量的增加而增大;当w(BN)=25%时,改性复合材料的热导率为0.901 2 W/(m.K),此时复合材料仍保持较低的介电常数和介电损耗。当BN用量相同时,偶联剂表面处理可有效改善复合材料的力学性能和导热性能。  相似文献   

4.
以聚酰胺6(PA6)为基体, 氮化硼(BN)作为导热填料,经双螺杆挤出机熔融共混,模压成型制得导热绝缘复合材料。研究了BN含量、粒径、形状和不同BN粒径复配对复合材料导热性能的影响,并研究了BN含量和粒径对复合材料绝缘性能的影响。结果表明,在各种粒径下,复合材料热导率均随BN填充量的增加而增大;在BN粒径为5 μm、填充量为25 %(体积分数,下同)时,复合材料热导率达到1.2187 W/(m·K);在BN填充量相同时,填料粒径对复合材料热导率的影响不是简单的单调规律,呈现50、100 μm时较小,1、5、15 μm时较大,150 μm时最大的规律;片状BN填料比球状BN填料更有利于提高复合材料的热导率;2种不同粒径填料复配所填充的复合材料的热导率大于单一粒径填充的复合材料;5 μm与150 μm粒径BN复配,在填充量为20 %,配比为1:3时,复合材料的热导率最大,达到1.3753 W/(m·K),为纯PA6的4.9倍;在不同BN含量和粒径下,复合材料体积电阻率均能达到10000000000000 Ω·cm以上,满足绝缘性能。  相似文献   

5.
研究聚丙烯(PP)/碳纤维(CF)/氮化硼(BN)复合材料的导热绝缘性能。结果表明,CF的含量达15%时,PP/CF复合材料的体积电阻率大幅度下降,出现逾渗现象;基于PP/CF(15%)填加不同含量的BN,当BN的含量达到20%。PP/CF/BN复合材料的热导率达0.939 5 W/(m·K),比纯PP提高近4倍,其体积电阻率为1.3×1014Ω·cm。  相似文献   

6.
采用硅烷偶联剂KH–550对氮化铝(Al N)颗粒进行表面处理,对多壁碳纳米管(MWCNTs)进行氧化处理。通过溶剂和超声分散法,分别制备了环氧树脂(EP)/Al N,EP/MWCNTs及EP/Al N/MWCNTs复合材料,用万能试验机测试了复合材料的冲击强度与弯曲强度,用热导率测定仪测试了其热导率,用扫描电子显微镜和透射电子显微镜测试了其微观结构。结果表明,Al N,MWCNTs在EP基体中分散均匀;单独或同时加入填料Al N和MWCNTs均能够提高EP复合材料的力学性能和导热性能。随着Al N,MWCNTs含量的增加,EP/Al N,EP/MWCNTs及EP/Al N/MWCNTs复合材料的冲击强度和弯曲强度均呈现先增大后减小的趋势,而热导率呈现逐渐增大的趋势;EP/Al N/MWCNTs复合材料的热导率明显高于相同份数Al N的EP/Al N复合材料的热导率。当MWCNTs含量为1.5份、Al N含量为40份时,EP/Al N/MWCNTs复合材料的综合性能最优异,冲击强度为22.118 k J/m2,弯曲强度为124.40 MPa,热导率达到0.434 W/(m·K)。  相似文献   

7.
目前,电子设备的散热方法已经不能满足日益增长的需求,严重影响了设备的稳定性和使用寿命。电子设备内部将积累大量的热元素,因此,制备具有高导热性的层压复合材料对于提高散热能力十分重要。为了解决该问题,将环氧树脂(EP)作为基体、氮化硼(BN)作为导热填料、玻璃纤维布(GFs)作为增强材料。BN被3-氨基丙基三聚硅氧烷(APTES)改性,更好地提高复合材料热导率。通过空间限域强制组装法制备EP/GFs/BN层压复合材料,作为导热复合材料应用。EP/GFs/BN-30层压复合材料的最高热导率为1.139 W/(m·K),与纯EP相比,提高了5倍。EP/GFs/BN层压复合材料还具有较好的力学、电绝缘和介电性能。  相似文献   

8.
以聚酰胺6(PA6)为基体,以氮化硼(BN)、氧化镁(MgO)为导热填料制备了PA6/BN/MgO导热复合材料。固定填料含量为50%(质量分数,下同)不变,考察MgO/BN配比的变化对复合材料热导率、力学性能和熔体流动性的影响。结果表明,材料的热导率、拉伸强度和弯曲强度随着MgO/BN配比的增大而减小,冲击强度和断裂伸长率随着MgO/BN配比的增大而增大,材料熔体流动性则呈现了随MgO/BN配比的增大先增大后减小的趋势。  相似文献   

9.
王明明  张炜巍 《粘接》2013,(7):36-39
采用高温模压成型法制备氮化硅/碳纤维/环氧树脂导热复合材料(SiN/CF/EP)。研究了34SiN用量和表面改性对SiN/CF/EP复合材料导热性能、导电性能和力学性能的影响。结果表明,复合材料3434的导热性能随SiN质量分数的增加而增大,当SiN质量分数为40%时,导热率为1.02W/mK;而3434SiN/CF/EP复合材料的导电率随SiN质量分数的增加而呈线性降低;力学性能则随SiN质量分数的增加先343434增大后降低。表面改性有助于进一步提高SiN/CF/EP复合材料的导热性能和力学性能。34  相似文献   

10.
采用化学包覆的方法在平均粒径分别为4.5 μm和20 μm的铝(Al)粉上包覆一层有机聚多巴胺(PDA),以环氧树脂(EP)为基体,包覆改性后的铝粉(PDA@Al)为导热填料,采用浇铸法制备了高导热绝缘环氧基复合材料(EP/PDA@Al)。结果表明,PDA@Al的加入有利于提高EP的热稳定性以及热导率,且当PDA@(20 μm)Al的含量为20 %(质量分数,下同)时,复合材料的热导率为0.521 W/(m·K),相比纯EP的热导率提高了184 %;相对纯Al填充的EP复合材料,EP/PDA@Al复合材料的绝缘性能显著提高。  相似文献   

11.
以聚丁烯-1(PB-1)为基体,二维片状氮化硼(BN)为导热填料,采用模压成型的方法制备了PB-1/BN导热复合材料。研究了BN用量对PB-1/BN导热复合材料导热性能、力学性能、流变性能以及结晶性能的影响。结果表明:BN的加入使复合材料的导热性能明显提高,当BN用量为50%时,复合材料的导热系数达到1.28 W/(m·K),与纯PB-1相比提高了266%;随着BN用量的增加,复合材料的力学性能明显下降;同时,其结晶温度和结晶度也有不同程度降低。  相似文献   

12.
以聚酰胺(PA6)为基体,氮化硅(SiC)为导热填料,钛酸钡(BT)为介电填料,通过热压法制备出系列复合材料;研究了不同粒径填料的搭配对材料导热与介电性能的影响。结果表明:在填充量较低时,使用混合粒径导热填料能产生一定的级配效应,从而提高复合材料的导热性能。总填充量为26%时,以4∶1的比例,用粒径为0.5~0.7μm和3μm的SiC共同填充PA6,制备获得了最高导热系数为0.9198W/(m·K)的复合材料,而不同粒径、不同功能的混合功能填料还能产生协同效应,进一步提升材料的导热性能并使材料同时获得较好的介电性能,当SiC填充量为20%,BT填充量为20%时,复合材料的导热系数达到1.1110W/(m·K),介电常数到达16(100Hz),损耗保持在0.075(100Hz)左右。  相似文献   

13.
使用硅烷偶联剂KH-560对氮化铝进行了表面改性,并以其为导热填料,环氧树脂为基体,制备了氮化铝/环氧树脂导热胶黏剂。采用FTIR、SEM、TG、热常数分析仪对导热胶黏剂进行了表征。结果表明:改性后硅烷偶联剂分子成功接枝在氮化铝表面。改性后,氮化铝与环氧树脂的界面粘结力增强,热稳定性和导热性均得到明显改善。当氮化铝质量为导热胶黏剂质量的70%时,改性氮化铝/环氧树脂热胶黏剂的导热系数为2.24W/(m·K),而未改性氮化铝/环氧树脂的导热系数仅为1.73W/(m·K)。为进一步提高其导热性能,制备了改性氮化铝/氧化石墨烯/环氧树脂导热胶黏剂,当改性氮化铝和氧化石墨烯的质量分数分别为50%和3%时,导热胶黏剂导热系数为3.05 W/(m·K)。  相似文献   

14.
在环氧树脂中添加多壁碳纳米管和膨胀石墨作为填料,以提高环氧树脂的导热性能. 结果表明,添加0.5wt%多壁碳纳米管时,环氧树脂的最佳导热系数为0.3448 W/(m?K),比不添加时提高30%;添加0.75wt%羧基改性多壁碳纳米管时,环氧树脂的最佳导热系数为0.3813 W/(m?K),比添不加时提高40%;同时添加多壁碳纳米管和膨胀石墨后,环氧树脂导热系数可进一步提高到0.4039 W/(m?K),表明在环氧树脂中添加混合填料,二者可在环氧树脂中形成有效的导热网络,能进一步提高聚合物的导热性能.  相似文献   

15.
以(3-氨丙基)三乙氧基硅烷(KH550)处理氮化硼/氧化铝(BN/Al2O3)导热粉体,在导热粉体表面引入氨基;通过熔融共混制备聚丙烯接枝马来酸酐(PP-g-MAH)增容的聚丙烯(PP)/BN/Al2O3导热绝缘复合材料。研究PP-g-MAH和导热填料的用量以及加工条件(转速、温度)对复合材料性能的影响。结果表明,在主机转速为300 r/min、PP-g-MAH为4g、导热填料的用量为50%时,复合材料的导热系数达到了0.7 W/(m·K),拉伸强度为17.65 MPa;添加相容剂后,复合材料和导热填料之间的相容性得到改善。  相似文献   

16.
Due to the rapid development of multifunctional and miniaturized electronic devices, the demand for polymer composites with mechanical properties, high-thermal conductivity, and dielectric properties is increasing. Therefore, the heat dissipation capacity of the composite must be improved. To solve this problem, we report a glass fabric (GF)/boron nitride (BN) network with a highly thermally conductive hetero-structured formed using polyvinyl alcohol (PVA) as an adhesive. The GF and BN are furtherly modified by (3-aminopropyl)triethoxysilane (APTES) for better thermal conductivity enhancement. When the BN content is 30%, the thermal diffusion coefficient and thermal conductivity of obtained PVA-mBN@mGF (PBG) are 2.843 mm2/s and 1.394 W/(m K), respectively. Epoxy (EP) resin is then introduced to prepare PBG/mBN/EP laminated composites via the hot pressing method as applied as thermal conductive composites. A highest thermal conductivity of 0.67 W/(m K) of PBG/mBN/EP laminated composites is obtained, three times higher than that of pure EP. In addition, the PBG/mBN/EP laminated composites also present favorable mechanical, electrically insulating, and dielectric properties.  相似文献   

17.
本文以高密度聚乙烯(HDPE)为基体,以自制的h-G-C-2/1体系杂化填料为导热填料,制备了GNPs/CNTs/HDPE导热高分子复合材料,重点对比了杂化填料和复配填料对GNPs/CNTs/HDPE复合材料在导热、导电及力学性能方面的影响。结果表明,GNPs/CNTs/HDPE导热高分子复合材料的拉伸强度为31.9 MPa,冲击强度为22.1 kJ/m^2,体积电阻率为690 MΩ·cm,热导率为0.759 W/(m·K),满足集成电路封装用技术参数要求。杂化填料的分散性优于复配填料,杂化填料在提高复合材料的拉伸性能方面优于复配填料,复配填料在提高复合材料的热导率方面优于杂化填料。本文所获得的研究成果为制备新型综合性能优异的集成电路封装用导热高分子复合材料提供了一条新的思路。  相似文献   

18.
To develop a high thermal conductive composite, an MgO filler was incorporated into a liquid crystalline (LC) epoxy containing a mesogenic moiety. The thermal conductivity of the obtained composite was 1.41 W/(m∙K) at 33 vol% content, which was remarkably higher than the value predicted using Bruggeman's model. To investigate the reason for this significant enhancement of the thermal conductivity in the LC epoxy composites, the LC phase structure of the composite was analyzed by a polarized optical microscope, an X-ray diffractometry (XRD) and a polarized IR mapping measurement. An XRD analysis indicated the local formation of a highly ordered smectic phase structure, even in the high-loading composite. This result indicated the promotion of the self-assembly of the mesogenic network polymer chains by the MgO filler loading. We considered that this highly ordered structural formation can lead to an increase in the matrix resin's thermal conductivity, which can result in the effective enhancement of the thermal conductivity in the LC epoxy/MgO composite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号