首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 187 毫秒
1.
基本周期对一维复周期光子晶体禁带的影响   总被引:1,自引:0,他引:1  
程阳 《半导体技术》2011,36(3):187-189
利用由传输矩阵法得到的一维光子晶体的反射率计算公式,针对具体的一维复周期全息光子晶体的周期结构,计算了光学厚度的改变以及折射率调制周期的改变对光子禁带结构的影响。结果表明,随着光学厚度对比的增大,禁带宽度增大,禁带中心的位置移向长波;随着折射率调制周期参数对比的变化,出现了两个禁带,随着折射率调制周期参数对比的增大,两个禁带之间距离增大,禁带分别移向短波和长波处,短波处禁带宽度减小。在设计光子晶体时,可以根据需要,通过改变光子晶体基本周期结构的参数来实现对光子带隙的控制。  相似文献   

2.
程阳 《激光技术》2010,34(2):279-281
为了研究两种偏振光通过1维光子晶体的偏振特性,采用传输矩阵法做了相关计算,得到介质折射率、折射率调制的变化,在光正入射和倾斜入射时对不同偏振光的禁带都有影响的结果。结果表明,当光线正入射的时候,折射率和折射率调制的变化都不会影响禁带位置,折射率增大,禁带宽度减小;折射率调制增大,禁带宽度变大,正入射时p偏振、s偏振的禁带完全重合;当光线以一定的角度照射到介质表面上时,两种偏振态下禁带位置随折射率调制的增大移向低频,带的中心位置一样,禁带宽度变大。两种偏振态下禁带带宽随折射率的增大变窄,禁带中心移向低频,s偏振的带宽减小得更明显;介质厚度对不同偏振态下禁带没有任何影响。这为设计1维全息光子晶体偏振片提供了理论依据。  相似文献   

3.
应用传输矩阵法对含色散负折射率缺陷一维sinc函数型光子晶体的光学传输特性进行了研究。结果表明:含色散负折射率缺陷的sinc函数型光子晶体比含同样缺陷的余弦函数型光子晶体具有更宽阔的光子禁带;该光子晶体的禁带宽度随着介质层折射率nB(0)、nA(0)或半周期厚度的增大迅速收缩变窄,缺陷模消失;当光波入射角增大时,禁带宽度变宽,缺陷模与禁带一起红移;计算还发现该禁带结构对色散负折射率缺陷层的位置变动十分敏感;但是,缺陷层厚度的变化不会改变禁带的位置和宽度,此时缺陷模会随着缺陷层厚度的增大向着禁带中心移动。这些结论对一维函数型光子晶体的设计具有重要参考意义。  相似文献   

4.
掺杂一维光子晶体的杂质态   总被引:1,自引:0,他引:1  
阐述了无缺陷光子晶体与掺杂光子晶体的结构,用光学特征矩阵方法,通过数值模拟计算具体讨论了一维光子晶体的一个实例。计算结果表明,掺杂光子晶体的禁带出现了极窄的、高透射率的尖峰,即光子杂质态,类似于半导体材料中的杂质能级。杂质层的引入增宽了原来光子禁带的宽度,杂质态的特征与杂质层的光学厚度、折射率及在晶体中的位置等因素有关。  相似文献   

5.
本文用遗传算法设计了大禁带的一维光子晶体.用传输矩阵法计算光子晶体能带.光子晶体的初始结构由计算机随机产生,通过遗传算法对光子晶体结构进行了优化,得到最大全方位相对禁带宽度(定义为禁带宽度与禁带中心之比)的一维光子晶体.发现由多种介质材料构建多层的一维光子晶体原胞时,折射率最大和最小的两种材料构成的两层结构的光子晶体相对禁带宽度最大,而且一维两层结构光子晶体的全方位禁带宽度随着两种介质折射率差的增大而增大,最后会达到一个饱和值200%.并研究了TM、TE模式的相对禁带宽度与光入射角的关系.  相似文献   

6.
给出了一种判断一维光子晶体禁带位置的相位图,利用扩展相位图可方便地描述光子晶体的禁带位置和禁带特征.研究发现,当光子晶体为1/4波片层堆时,光子晶体的禁带最宽;若要进一步展宽禁带,需提高构成周期单元的两种介质的折射率比.对于一般的光子晶体,若周期单元中两种介质的光学厚度不等,则其禁带中心将偏离中心频率的整数倍.此外还研究了禁带中心区的透射率,给出了中心频率附近透射率的一级近似解析解,并由此定性讨论了Fabry-Perot腔的谱线宽度和品质因子.  相似文献   

7.
程阳  崔丽彬 《光电技术应用》2011,26(2):53-55,79
利用传输矩阵法对折射率渐变的一维复周期全息光子晶体的带隙结构进行了数值计算,分析了针对记录材料重铬酸盐明胶,在这种光折变介质中存在光子带隙,继而讨论了折射率、折射率调制度、以及介质厚度对光子带隙的影响.通过计算发现,在制作光线正入射时,折射率和折射率调制的改变不影响禁带位置,禁带宽度随着所使用的记录介质折射率的增加而减...  相似文献   

8.
苏安  蒙成举  高英俊  潘继环 《激光与红外》2014,44(11):1253-1257
通过传输矩阵法理论,研究两端对称缺陷C对一维光子晶体ACmB(AB)n(BA)nBCmA透射谱的影响,发现:当无缺陷C时,透射谱符合镜像对称结构光子晶体的透射谱特征。当引入缺陷C后,随着缺陷折射率nC的增大,禁带中的透射峰逐渐变宽的同时向高频方向移动。缺陷周期数m及其光学厚度DC对透射谱的影响,在数值上具有明显的奇偶特性,m为奇数或DC为奇数倍时,禁带中心均出现一个较宽的通带,且通带宽度随着m或DC的增大逐渐变窄,而且通带上方的振荡加快,但通带中心所处频率位置不变;m为偶数或DC为偶数倍时,禁带中心均出现一条细窄缺陷模,且缺陷模的宽度随着m或DC的增大缓慢变窄,但其位置不变;两端对称缺陷对对称结构光子晶体透射谱的调制规律,为光子晶体设计窄带、宽带光学滤波器或光开关等提供指导。  相似文献   

9.
袁卫  张建奇  秦玉伟  冯洋 《红外与激光工程》2016,45(1):104005-0104005(5)
光子晶体引入缺陷后形成的缺陷模在增益介质中将被放大形成激光,为了进一步明确缺陷的激光特性,首先从理论上分析了光子晶体的特征矩阵,接着得出了以下光子禁带特性:光带隙宽度随着周期数的增加而增大,但在周期数达到一定数值后其光带隙宽度是确定不变的;折射率比值越大,光带隙宽度越大;叠加不同中心波长的光子晶体可以简单、有效地拓展光带隙范围。在一维KTP光子晶体的禁带特性实验分析中得到了KTP缺陷的光子能带结构的波长响应曲线;随着温度的上升,KTP的折射率随之增大,进而缺陷模向长波长方向移动。上述研究对于微小光源的发展具有一定的理论和实际意义。  相似文献   

10.
根据光子晶体的电磁特性,求解麦克斯韦方程,应用传输矩阵法求解一维光子晶体中电磁波传播的透射率特性,通过改变构成一维光子晶体的层数、材料折射率和材料厚度,得到层数变化对禁带宽度变化影响不大,折射率差值增大时带隙宽度也逐渐增大,两介质厚度有一定厚度差比厚度一样时形成较宽带隙。  相似文献   

11.
负折射率缺陷层光子晶体的缺陷模和光学增强   总被引:2,自引:2,他引:0  
研究了缺陷层为负折射率材料的一维光子晶体的带隙结构.研究结果表明:与缺陷层为正折射率材料的同类型结构相比,负折射率材料缺陷模的宽度变宽,且随着缺陷层厚度的增加,缺陷模向高频(短波)方向移动,缺陷模的移动速度也大.同时研究了负折射率缺陷层位置的不同对光子晶体透射特性的影响以及光学增强效应.  相似文献   

12.
一维掺杂光子晶体缺陷模的全貌特征   总被引:6,自引:1,他引:6  
刘启能 《半导体光电》2007,28(2):224-227
通过一维掺杂光子晶体缺陷模的三个不同角度的立体图以及它们对应的俯视切面图,全面地研究了缺陷模随杂质光学厚度、杂质折射率以及光子晶体折射率的变化关系,得出了一维掺杂光子晶体缺陷模的全貌特征,并得到以下重要结论:缺陷模透射峰随杂质光学厚度变化呈周期性的出现,在同一周期上缺陷模的波长随杂质光学厚度呈线性变化;缺陷模透射峰的半高宽度随杂质折射率的增加而减小,但陷模透射峰的高度不受杂质折射率变化的影响;光子晶体的折射率对缺陷模透射峰的峰高和半高宽度都有显著的影响.  相似文献   

13.
一维光子晶体禁带反射率随结构的变化   总被引:2,自引:0,他引:2  
用特征矩阵方法得出了一维光子晶体的反射率计算公式,以/4波片堆为例,计算了当两种介质采用不同折射率的物质时,在第一光子禁带TE波及TM波的反射率随入射角的变化。结果显示,TE波与TM波的情况不完全相同。总的来说,增大两种介质折射率的差别,或者同时提高两种介质的折射率,或者增加周期数都有利于制造出具有完全光子禁带的一维光子晶体。  相似文献   

14.
席锋 《半导体光电》2011,32(5):657-660
对正负折射率材料构成的一维光子晶体,在横向圆形受限的条件下,推出了光波在其中传播时模式所满足的条件,并利用特征矩阵法研究了正负折射率绝对值相同时,光波在不同模式和不同介质厚度可见光能实现透射波和零反射。正负折射率绝对值不等时,得出介质厚度为半波长时透射波出现在中心波长处;随着模式数即入射角增大,透射波曲线向短波方向移动;介质折射率差的绝对值越大、周期数增加都使透射波谱宽度变窄。  相似文献   

15.
一维光子晶体基本周期的介质折射率取n2=1.5和n3=2.5,采用传输矩阵法,通过For-tran编程进行数值计算,分别得到了不同周期层数(N)及不同入射角度(θ1)下的一维光子晶体透射谱;从光子带隙频宽、带隙中心位置及带隙中心的透射率值等方面,分析并讨论了周期层数及入射角对一维光子晶体带隙特性的影响。结果表明,随着N值的增加,带隙中心的透射率值迅速减小,当N增至16层时,一维光子晶体基本形成;此外,在0°~85°内,随着入射角度的增加,带隙低频值向左移动,高频值向右移动,带隙宽度呈增加的趋势,入射角不影响光子带隙的中心位置。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号