首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The gene encoding 3-ketosteroid-Delta1-dehydrogenase from Rhodococcus rhodochrous was cloned and sequenced. The gene (ksdD) consists of 1,536 nucleotides and encodes an enzyme protein of 511 amino acid residues. The amino terminal methionine residue was deleted in the mature protein. The amino acids involved in the flavin binding site are conserved in the dehydrogenase sequence. The deduced amino acid sequence is highly homologous to that from Arthrobacter simplex but less so to that from Pseudomonas testosteroni. Upstream of the gene was located a heat shock protein gene, dnaJ, and downstream, a gene of a hypothetical protein. The enzyme gene was ligated with an expression vector to construct a plasmid pDEX-3 and introduced into Escherichia coli cells. The transformed cells hyperexpressed the 3-ketosteroid-Delta1-dehydrogenase as an active and soluble protein at more than 30 times the level of R. rhodochrous cells. Purification of the recombinant 3-ketosteroid-Delta1-dehydrogenase from the E. coli cells by a simplified procedure yielded about 13 mg of enzyme protein/liter of the bacterial culture. The purified recombinant dehydrogenase exhibited identical molecular and catalytic properties to the R. rhodochrous enzyme.  相似文献   

2.
Isocitrate dehydrogenase from an extremely thermophilic bacterium, Thermus aquaticus YT1, was purified to homogeneity, and the gene was cloned by using a degenerate oligonucleotide probe based on the N-terminal sequence. The gene consisted of a single open reading frame of 1,278 bp preceded by a Shine-Dalgarno ribosome binding site, and a terminator-like sequence was detected downstream of the open reading frame. The G+C content of the coding region was 65%, and that of the third nucleotide of the codons was 93%. The amino acid sequence of the enzyme showed a relatively low level of similarity to the counterpart from T. thermophilus (35% identity) but showed higher levels of similarity (54 to 69% identity) to the other bacterial counterparts so far reported, including those from Escherichia coli, Bacillus subtilis, Vibrio sp., and Anabaena sp. The cloned gene was highly expressed in E. coli and easily purified to homogeneity by heat treatment (70 degrees C, 30 min) and DEAE column chromatography to yield approximately 10 mg of protein from 1 g of wet cells. The recombinant enzyme showed high thermostability and almost the same heat denaturation profile as the intact enzyme purified from the thermophile cells, implying that the recombinant protein has the same structure as the intact one.  相似文献   

3.
The catalytic subunit of human DNA polymerase delta has been overexpressed in insect cells by a recombinant baculovirus. The recombinant protein has a Mr = approximately 125,000 and is recognized by polyclonal antisera against N-terminal and C-terminal peptides of the catalytic subunit of human DNA polymerase delta. The recombinant protein was purified to near homogeneity (approximately 1200-fold) from insect cells by chromatography on DEAE-cellulose, phosphocellulose, heparin-agarose, and single-stranded DNA-cellulose. The purified protein had both DNA polymerase and 3'-5' exonuclease activities. The properties of the recombinant catalytic subunit were compared with those of the native heterodimeric DNA polymerase delta isolated from fetal calf thymus, and the enzymes were found to differ in several respects. Although the native heterodimer is equally active with either Mn2+ or Mg2+ as divalent cation activator, the recombinant catalytic subunit is approximately 5-fold more active in Mn2+ than in Mg2+. The most striking difference between the two proteins is the response to the proliferating cell nuclear antigen (PCNA). The activity and processivity of native DNA polymerase delta are markedly stimulated by PCNA whereas it has no effect on the recombinant catalytic subunit. These results suggest that the small subunit of DNA polymerase delta is essential for functional interaction with PCNA.  相似文献   

4.
Human O6-methylguanine-DNA methyltransferase (MGMT) protects human cells from the mutagenic effects of alkylating agents by repairing the O6-alkylguanine residues formed by these agents in the nuclear DNA. We report here a study showing a possible two-step model for the nuclear localization of the 21 kDa human protein. The first step is the translocation of the protein from the cytosol to the nucleus. This appears to require the nuclear targeting property associated with the holoprotein in combination with a cellular factor(s) to effect the nuclear translocation of MGMT. The second step involves the nuclear retention of MGMT (to prevent its export from the nucleus). This requires a basic region (PKAAR, codons 124-128) that can bind to the non-diffusible DNA elements in the nucleus. Supporting data for such mechanisms are: (i) the holoprotein can target the cytosolic 110 kDa beta-galactosidase into the nucleus; (ii) purified recombinant MGMT requires a cellular factor for transport across the nuclear membrane; (iii) nuclear MGMT can be removed selectively by DNase I; (iv) the repair-positive K125L mutant, which alters the PKAAR motif, remains in the cytosol and fails to bind DNA in vitro; and (v) polypeptide containing the PKAAR motif has no nuclear targeting property. Interestingly, mutants in another basic region, KLLKVVK (codons 101-107) are DNA binding and repair deficient but entirely nuclear. As these substitutions affect the functional properties of human MGMT, they are potential targets for genetic screening of individuals for risk assessment to alkylating agents.  相似文献   

5.
The gene coding for Penicillium amagasakiense glucose oxidase (GOX; beta-D-glucose; oxygen 1-oxidoreductase [EC 1.1.3.4]) has been cloned by PCR amplification with genomic DNA as template with oligonucleotide probes derived from amino acid sequences of N- and C-terminal peptide fragments of the enzyme. Recombinant Escherichia coli expression plasmids have been constructed from the heat-induced pCYTEXP1 expression vector containing the mature GOX coding sequence. When transformed into E. coli TG2, the plasmid directed the synthesis of 0.25 mg of protein in insoluble inclusion bodies per ml of E. coli culture containing more than 60% inactive GOX. Enzyme activity was reconstituted by treatment with 8 M urea and 30 mM dithiothreitol and subsequent 100-fold dilution to a final protein concentration of 0.05 to 0.1 mg ml-1 in a buffer containing reduced glutathione-oxidized glutathione, flavin adenine dinucleotide, and glycerol. Reactivation followed first-order kinetics and was optimal at 10 degrees C. The reactivated recombinant GOX was purified to homogeneity by mild acidification and anion-exchange chromatography. Up to 12 mg of active GOX could be purified from a 1-liter E. coli culture. Circular dichroism demonstrated similar conformations for recombinant and native P. amagasakiense GOXs. The purified enzyme has a specific activity of 968 U mg-1 and exhibits kinetics of glucose oxidation similar to those of, but lower pH and thermal stabilities than, native GOX from P. amagasakiense. In contrast to the native enzyme, recombinant GOX is nonglycosylated and contains a single isoform of pI 4.5. This is the first reported expression of a fully active, nonglycosylated form of a eukaryotic, glycosylated GOX in E. coli.  相似文献   

6.
7.
A DNA genomic library constructed from Bacillus stearothermophilus, a gram-positive, facultative thermophilic aerobe that secretes a thermostable beta-mannanase, was screened for mannan hydrolytic activity. Recombinant beta-mannanase activity was detected on the basis of the clearing of halos around Escherichia coli colonies grown on a dye-labelled substrate, Remazol brilliant blue-locust bean gum. The nucleotide sequence of the mannanase gene, manF, corresponded to an open reading frame of 2,085 bp that codes for a 32-amino-acid signal peptide and a mature protein with a molecular mass of 76,089 Da. From sequence analysis, ManF belongs to glycosyl hydrolase family 5 and exhibits higher similarity to eukaryotic than to bacterial mannanases. The manF coding sequence was subcloned into the pH6EX3 expression plasmid and expressed in E. coli as a recombinant fusion protein containing a hexahistidine N-terminal sequence. The fusion protein has thermostability similar to the native enzyme and was purified by Ni2+ affinity chromatography. The values for the kinetic parameters Vmax and Km were 384 U/mg and 2.4 mg/ml, respectively, for the recombinant mannanase and were comparable to those of the native enzyme.  相似文献   

8.
Recombinant polyomavirus VP2 protein was expressed in Escherichia coli (RK1448), using the recombinant expression system pFPYV2. Recombinant VP2 was purified to near homogeneity by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, electroelution, and Extracti-Gel chromatography. Polyclonal serum to this protein which reacted specifically with recombinant VP2 as well as polyomavirus virion VP2 and VP3 on Western blots (immunoblots) was produced. Purified VP2 was used to establish an in vitro protein-protein interaction assay with polyomavirus structural proteins and purified recombinant VP1. Recombinant VP2 interacted with recombinant VP1, virion VP1, and the four virion histones. Recombinant VP1 coimmunoprecipitated with recombinant VP2 or truncated VP2 (delta C12VP2), which lacked the carboxy-terminal 12 amino acids. These experiments confirmed the interaction between VP1 and VP2 and revealed that the carboxyterminal 12 amino acids of VP2 and VP3 were not necessary for formation of this interaction. In vivo VP1-VP2 interaction study accomplished by cotransfection of COS-7 cells with VP2 and truncated VP1 (delta N11VP1) lacking the nuclear localization signal demonstrated that VP2 was capable of translocating delta N11VP1 into the nucleus. These studies suggest that complexes of VP1 and VP2 may be formed in the cytoplasm and cotransported to the nucleus for virion assembly to occur.  相似文献   

9.
Evidence from both experimental carcinogenesis and studies in human cirrhotic liver suggest that defective repair of the promutagenic DNA base lesion, O6-methylguanine, is a factor in the multistep process of hepatocellular carcinogenesis. Ubiquitous environmental alkylating agents such as N-nitroso compounds can produce O6-methylguanine in cellular DNA. Unrepaired, O6-methylguanine can lead to the formation of G --> A transition mutations, a known mechanism of human oncogene activation and tumour suppressor gene inactivation. Combined treatment of rodents with an agent producing O6-methylguanine in DNA, and an agent promoting cell proliferation, leads to development of hepatic nodules and hepatocellular carcinoma (HCC), cell division, hence DNA replication, being required for the propagation of tumorigenic mutation(s) in hepatocyte DNA. The paramount importance of O6-methylguanine in hepatocellular carcinogenesis is indicated by the observation that transgenic mice engineered to have increased hepatic levels of repair enzyme O6-methylguanine-DNA methyltransferase (MGMT) are significantly less prone to hepatocellular carcinogenesis following alkylating agent treatment. Cirrhosis is a universal risk factor for development of human HCC, and a condition that is characterized by increased hepatocyte proliferation as a result of tissue regeneration. Levels of the human repairing enzyme for O6-methylguanine were found to be significantly lower in cirrhotic liver than in normal tissue. In accord with findings from animal models, this suggested a mechanism in which persistence of O6-methylguanine due to defective DNA repair by MGMT, together with increased hepatocyte proliferation, might lead to specific gene mutation(s) and hepatocellular carcinogenesis. Screening for the presence and persistence of O6-methylguanine in human DNA presently involves formidable technical difficulty. Indications are that such limitations might be overcome by the use of an ultrasensitive method such as immuno-polymerase chain reaction (PCR). This approach should allow parallel measurement of DNA adduct and repair enzyme in routine liver biopsy samples. It might also enable investigation of O6-methylguanine in human genes specifically associated with hepatocellular carcinogenesis. Given the wide variation in human MGMT levels observed between individuals, tissues, and cells, this technology should be adapted to permit the ultrasensitive localisation and measurement of adducts and repairing enzyme in liver biopsy tissue sections. Ability to ultrasensitively measure O6-methylguanine, and its repair enzyme, should prove valuable in the risk assessment of cirrhotic patients for developing hepatocellular carcinoma.  相似文献   

10.
11.
Tryparedoxin peroxidase from Crithidia fasciculata is an essential component of the trypanothione-dependent hydroperoxide metabolism in the trypanosomatids (Nogoceke, E., Gommel, D. U., Kiebeta, M., Kalisz, H. M., and Flohé, L. (1997) Biol. Chem. 378, 827-836). The tryparedoxin peroxidase gene and its flanking regions have been isolated and sequenced from a C. fasciculata genomic DNA library. It consists of an open reading frame of 564 base pairs encoding a protein of 188 amino acid residues. The gene, modified to encode 6 additional histidine residues, was expressed in Escherichia coli and the recombinant protein was purified to homogeneity by metal chelating chromatography. Recombinant tryparedoxin peroxidase has a subunit molecular mass of 21884 +/- 22 and contains two isoforms of pI 6.2 and 6.3. It exhibits a kinetic pattern identical to that of the authentic tryparedoxin peroxidase and has a similar specific activity of 2.51 units mg-1. The enzyme unequivocally belongs to the peroxiredoxin family of proteins, whose members have been found in all phyla. A phylogenetic tree comprising 47 protein and DNA sequences showed tryparedoxin peroxidase and a homologous Trypanosoma brucei sequence to form a distinct molecular clade. The consensus sequence: xnAx5-6Fx9Gx3Vx2Fx1Px2Fx1FVCPTEx21Sx1Dx7Wx16-19Dx15- 16Gx3Rx2Fx2Dx27Ax 1Qx4-11Cx1-3Wxn was demonstrated by alignment of the sequences of tryparedoxin peroxidase and 8 other peroxiredoxins with established peroxidase function.  相似文献   

12.
13.
2-Carboxybenzaldehyde dehydrogenase from the phenanthrene-degrading bacterium Nocardioides sp. strain KP7 was purified and characterized. The purified enzyme had a molecular mass of 53 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and 205 kDa by gel filtration chromatography. Thus, the homotetramer of the 53-kDa subunit constituted an active enzyme. The apparent Km and kcat values of this enzyme for 2-carboxybenzaldehyde were 100 microM and 39 s(-1), respectively, and those for NAD+ were 83 microM and 32 s(-1), respectively. The structural gene for this enzyme was cloned and sequenced. The length of the gene was 1,455 bp. The nucleotide sequence of the 10,279 bp of DNA around the gene for 2-carboxybenzaldehyde dehydrogenase was also determined, and seven open reading frames were found in this DNA region. These were the genes for 1-hydroxy-2-naphthoate dioxygenase (phdI) and trans-2'-carboxybenzalpyruvate aldolase (phdJ), orf1, the gene for 2-carboxybenzaldehyde dehydrogenase (phdK), orf2/orf3, and orf4. The amino acid sequence of the orf1 product was similar to that of the aromatic hydrocarbon transporter gene (pcaK) in Pseudomonas putida PRS2000. The amino acid sequence of the orf4 product revealed a similarity to cytochrome P-450 proteins. The region between phdK and orf4 encoded orf2 and orf3 on different strands. The amino acid sequences of the orf2 and orf3 products exhibited no significant similarity to the reported sequences in protein databases.  相似文献   

14.
Herpes simplex virus type 1 DNase (HSV-1 DNase) was expressed in insect cells by recombinant baculovirus (NPVUL12) and purified by a combination of anionic exchanger chromatography and gel filtration. Two polypeptides of 85 and 75 kD, whose ratio varied during purification, were induced 24 h after infection. The 75-kD protein was isolated and shown to possess catalytic activity. Gel filtration analysis indicated that the active form of the enzyme at an ionic strength of I = 0.3 is a dimeric protein with an apparent molecular weight of 130,000. The recombinant enzyme exhibited the overall characteristics of the native enzyme such as 5'-3' exonuclease and endonuclease activities with a preferred degradation of DNA. In the absence of extraneously added Mg2+, the enzyme was capable of removing mononucleotides from 5'-end-labeled DNA, but not from RNA and 3'-end-labeled DNA. The peculiar mechanism of double-strand DNA degradation suggests a specific role of HSV-1 DNase in DNA recombination processes during viral replication.  相似文献   

15.
The authors have developed a rapid and convenient method for purification of a low molecular weight form (delta 10) of the bacterial plasminogen activator, staphylokinase. Recombinant staphylokinase is expressed in Escherichia coli, with an amino terminal extension that facilitated purification by immobilized metal-affinity chromatography. Purified staphylokinase is treated with human plasminogen, and the resulting truncated form is purified using a combination of immobilized metal affinity chromatography and hydrophobic interaction chromatography. Purified protein is characterized by amino terminal sequencing and in vitro plasminogen activation assay.  相似文献   

16.
17.
The prtT gene, coding for trypsinlike proteolytic activity, has been isolated from Porphyromonas gingivalis ATCC 53977. This gene is present immediately downstream from the sod gene on a 5.9-kb DNA fragment from the organism isolated in Escherichia coli. The complete nucleotide sequence of the gene was determined, and the deduced amino acid sequence of the enzyme corresponds to a 53.9-kDa protein with an estimated pI of 11.85. Gelatin-sodium dodecyl sulfate-polyacrylamide gel electrophoresis zymography also indicated a similar molecular size for the protease. The enzyme was purified to near homogeneity following anion-exchange and gel-filtration chromatography. The purified enzyme also exhibited a single protein species with a size of approximately 53 kDa. Enzyme activity was strongly dependent upon the presence of reducing agents (dithiothreitol, cysteine, and 2-mercaptoethanol) and was also stimulated in the presence of calcium ions. A comparison of the properties of the prtT gene product with comparable parameters of proteases previously purified from different strains of P. gingivalis suggested that the cloned protease represents a previously uncharacterized enzyme.  相似文献   

18.
Bis-Chloro-Methyl-Ether is an alkylating agent and a recognised carcinogen. It can form spontaneously from the reaction of chloridric acid with formaldehyde. In the past it was extensively used as a chemical intermediate in organic synthesis, particularly as a crosslinking agent in the manufacture of ion-exchange resins. Recently, since its carcinogenicity has been proved in animal studies and confirmed in epidemiological studies of occupationally exposed cohorts, its use has been consistently reduced. A characteristic association has been observed between BCME exposure and a peculiar lung cancer histotype (oat cell carcinoma). In spite of these data, little information is available on the molecular alterations related to BCME exposure and possibly to its carcinogenic activity. Some suggestions can reasonably be obtained considering how the class of alkylating agents acts. They form adducts, binding different positions of DNA bases. The reaction that seems more relevant for mutagenesis and carcinogenesis is the alkylation at the atom O6 of guanine in DNA, which is followed by mis-coding and GC-->AT transition mutation. This kind of alteration determines the activation of a group of enzyme like DNA repair, mismatch repair, excision repair and a specific one, methyl guanine methyl transferase (MGMT). This last repair protein transfers alkyl groups from the O6 position of guanine to an internal cysteine residue, inactivating itself. Thus, the possibility for the cell to eliminate alkylated DNA bases depends strictly upon the cellular content of MGMT. In this view reduced or absent levels of the enzyme are associated with an increased number of adducts and hence increased risk of DNA mutations and cancer. At the moment no molecular studies in vivo have been performed to verify this hypothesis. The peculiar association BCME-oat cell carcinoma, the most chemosensitive tumor, need further investigation.  相似文献   

19.
Proline dipeptidase (prolidase) was purified from cell extracts of the proteolytic, hyperthermophilic archaeon Pyrococcus furiosus by multistep chromatography. The enzyme is a homodimer (39.4 kDa per subunit) and as purified contains one cobalt atom per subunit. Its catalytic activity also required the addition of Co2+ ions (Kd, 0.24 mM), indicating that the enzyme has a second metal ion binding site. Co2+ could be replaced by Mn2+ (resulting in a 25% decrease in activity) but not by Mg2+, Ca2+, Fe2+, Zn2+, Cu2+, or Ni2+. The prolidase exhibited a narrow substrate specificity and hydrolyzed only dipeptides with proline at the C terminus and a nonpolar amino acid (Met, Leu, Val, Phe, or Ala) at the N terminus. Optimal prolidase activity with Met-Pro as the substrate occurred at a pH of 7.0 and a temperature of 100 degrees C. The N-terminal amino acid sequence of the purified prolidase was used to identify in the P. furiosus genome database a putative prolidase-encoding gene with a product corresponding to 349 amino acids. This gene was expressed in Escherichia coli and the recombinant protein was purified. Its properties, including molecular mass, metal ion dependence, pH and temperature optima, substrate specificity, and thermostability, were indistinguishable from those of the native prolidase from P. furiosus. Furthermore, the Km values for the substrate Met-Pro were comparable for the native and recombinant forms, although the recombinant enzyme exhibited a twofold greater Vmax value than the native protein. The amino acid sequence of P. furiosus prolidase has significant similarity with those of prolidases from mesophilic organisms, but the enzyme differs from them in its substrate specificity, thermostability, metal dependency, and response to inhibitors. The P. furiosus enzyme appears to be the second Co-containing member (after methionine aminopeptidase) of the binuclear N-terminal exopeptidase family.  相似文献   

20.
The gene encoding the beta subunit of a molecular chaperonin from the hyperthermophilic archaeon Pyrococcus sp. strain KOD1 (cpkB) was cloned, sequenced, and expressed in Escherichia coli. The cpkB gene is composed of 1,641 nucleotides, encoding a protein (546 amino acids) with a molecular mass of 59,140 Da. The enhancing effect of CpkB on enzyme stability was examined by using Saccharomyces cerevisiae alcohol dehydrogenase (ADH). Purified recombinant CpkB prevents thermal denaturation and enhances thermostability of ADH. CpkB requires ATP for its chaperonin function at a low CpkB concentration; however, CpkB functions without ATP when present in excess. In vivo chaperonin function for the solubilization of insoluble proteins was also studied by coexpressing CpkB and CobQ (cobryic acid synthase), indicating that CpkB is useful for solubilizing the insoluble proteins in vivo. These results suggest that the beta subunit plays a major role in chaperonin activity and is functional without the alpha subunit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号