首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 601 毫秒
1.
Nanoimprint lithography has the potential to cost efficiently realize patterns with extremely narrow linewidth over a large area. A significant challenge to achieving this target is the fabrication of nanoimprint templates. The cost and writing time of conventional electron beam lithography for direct writing of the templates rapidly increases as the patterned area increases and the linewidth decreases. We have developed a novel process for creating narrow linewidth nanopatterns. This process is based on conformal deposition of thin films on seed nanopatterns. We have demonstrated the process by fabricating nanosized loops and lines. The linewidth of the structures can be tuned precisely, and in our experiments it could be reduced to 20?nm. The closed loop structures are interesting, since this geometry is crucially important in many leading edge research fields such as negative refractive index materials, ultrahigh density memory applications and quantum rings. The fabricated template was subsequently used as a template in soft-stamp UV nanoimprint lithography to successfully replicate the structures in UV-curable resist.  相似文献   

2.
The interaction between resist and template during the separation process after nanoimprint lithography (NIL) can cause the formation of defects and damage to the templates and resist patterns. To alleviate these problems, fluorinated self-assembled monolayers (F-SAMs, i.e.?tridecafluoro-1,1,2,2,tetrahydrooctyl trichlorosilane or FDTS) have been employed as template release coatings. However, we find that the FDTS coating undergoes irreversible degradation after only 10 cycles of UV nanoimprint processes with SU-8 resist. The degradation includes a 28% reduction in surface F atoms and significant increases in the surface roughness. In this paper, diamond-like carbon (DLC) films were investigated as an alternative material not only for coating but also for direct fabrication of nanoimprint templates. DLC films deposited on quartz templates in a plasma enhanced chemical vapor deposition system are shown to have better chemical and physical stability than FDTS. After the same 10 cycles of UV nanoimprints, the surface composition as well as the roughness of DLC films were found to be unchanged. The adhesion energy between the DLC surface and SU-8 is found to be smaller than that of FDTS despite the slightly higher total surface energy of DLC. DLC templates with 40?nm features were fabricated using e-beam lithography followed by Cr lift-off and reactive ion etching. UV nanoimprinting using the directly patterned DLC templates in SU-8 resist demonstrates good pattern transfer fidelity and easy template-resist separation. These results indicate that DLC is a promising material for fabricating durable templates for UV nanoimprint lithography.  相似文献   

3.
Guiding of neuronal cells on surfaces is required for the investigation of fundamental aspects of neurobiology, for tissue engineering, and for numerous bioelectronic applications. A modular method to establish nanostructured chemical templates for local deposition of gold nanoparticles is presented. A process comprising nanoimprint lithography, silanization, lift‐off, and gold nanoparticle immobilization is used to fabricate the particle patterns. The chemical composition of the surface can be modified by in situ adsorption of cell‐binding ligands to locally addressed particles. The versatility of this approach is demonstrated by inverting the binding affinity between rat cortical neurons and nanopatterned surfaces via wet‐chemical means and thereby reversing the pattern of guided neurons.  相似文献   

4.
We investigate the ability of gold nanoparticles of different size, shape, and organization to control the growing process of ZnO semiconductor nanoparticles onto solid substrates through the successive chemical solution deposition (SCSD) method. Flower-like assemblies of ZnO nanostructures were grown successfully on periodic arrays of triangular gold nanoparticles fabricated by nanosphere lithography and randomly deposited colloidal gold nanospheres. Their morphology, crystallinity, phase purity, and vibrational properties were correlated with the metallic features of the substrates.  相似文献   

5.
A novel strategy for fabricating nanoimprint templates with sub-10 nm patterns is demonstrated by combining electron beam lithography and atomic layer deposition. Nanostructures are replicated by step-and-repeat nanoimprint lithography and successfully transferred into functional material with high fidelity. The process extends the capacity of step-and-repeat nanoimprint lithography as a single digit nanofabrication method. Using the ALD process for feature shrinkage, we identify a size dependent deposition rate.  相似文献   

6.
Herein, a nanoporous alumina was fabricated to use as a mold in transforming nanopillar structures onto a thin film polymer by thermal nanoimprint lithography (NIL). The size of the pores was successfully controlled by varying the applied voltages and etching time. These nanoporous structures were transferred to the Cyclo-olefin polymer (COP) film surface from the porous mold by a thermal nanoimprinting process. A plasmonic substrate was fabricated by sputtering a thin layer of gold onto this nanopillar polymer structure, and the refractive index response in a variety of media was evaluated. Finally, the biosensing capacity of this novel plasmonic substrate was verified by analysis of Human immunoglobulin and achieved a minimum detection limit of 1.0 ng/mL. With the advantages of mass production with consistent reproducibility stemming from the nanoimprint fabrication process, our gold-capped polymeric pillars are ready for the transition from academic interest into commercialization systems for practical use in diagnostic applications.  相似文献   

7.
This study reports the pattern definable and low cost fabrication of nanopatterned conducting polymer film on flexible substrates. Noble nanopatterned polymer hard template was fabricated by using nanoimprint lithography (NIL) and used for electropolymerization of conducting polymer. Conducting polymer was electrochemically deposited on the template and transferred over to flexible substrates. Eventually conducting polymer films with various nanopatterns were fabricated on flexible substrates. High pattern definability was achieved by nanoimprinted polymer template, which was molded from lithographically fabricated stamp. Low cost fabrication was accomplished due to low cost NIL, reusable polymer templates, and low material consumption of electrodeposition. The electrodeposited films were transferred using double sided tape. Because the templates are made of flexible polymer, the transfer bonding method applied in this study is adaptable to both wafers and flexible polymer substrates. The fabricated nanopatterned conducting polymer film can be applied to gas sensors, super capacitors, super wetting films, and neuron interfaces due to its characteristic of high surface to volume. For an illustrative application, the gas sensing properties of films were tested. The result showed enhanced sensing characteristic with nanopatterned film, which are attributed to the high surface to volume ratio of nanopatterned films.  相似文献   

8.
In this paper,we report a new strategy for the fabrication of gold nanoring arrays via colloidal lithography and polymer-assisted self-assembly of gold nanoparticles (Au NPs).First,multi-segmented polymer nanorod arrays were fabricated via colloidal lithography.They were then used as templates for Au NP adsorption,which resulted in nanoparticles on the poly(4-vinyl pyridine) (P4VP) segments.Continuous gold nanorings were formed after electroless deposition of gold.The diameter,quantity,and spacing of the gold nanorings could be tuned.Three dimensional coaxial gold nanorings with varying diameters could be fabricated on a polymer nanorod by modifying the etch parameters.The nanorings exhibited optical plasmonic resonances at theoretically predicted wavelengths.In addition,the polymer-assisted gold nanorings were released from the substrate to generate a high yield of free-standing nanorings.This simple,versatile method was also used to prepare nanorings from other metals such as palladium.  相似文献   

9.
A new fabrication process of silicon template for nanoimprint lithography is developed. A very fine and high aspect Si lines are fabricated by the combination of plasma process for Si deep etching and anisotropic wet etching by potassium hydroxide solution (KOH treatment). Improved switching process, which consists of sequentially alternating etching and deposition steps, is used as the Si deep etching. The side wall profile of the Si lines can be controlled by the deposition step time. Line pattern with vertical side wall is fabricated. The line width and height are 0.2 µm and 2.9 µm, respectively. By the KOH treatment the side wall corrugation can be reduced and the line width also decreases. Very fine line of 45 nm width at the line top with the pattern height of 3.0 µm can be fabricated by use of the line width shrink by the KOH treatment.  相似文献   

10.
We report a non-conventional shear-force-driven nanofabrication approach, inclined nanoimprint lithography (INIL), for producing 3D nanostructures of varying heights on planar substrates in a single imprinting step. Such 3D nanostructures are fabricated by exploiting polymer anisotropic dewetting where the degree of anisotropy can be controlled by the magnitude of the inclination angle. The feature size is reduced from micron scale of the template to a resultant nanoscale pattern. The underlying INIL mechanism is investigated both experimentally and theoretically. The results indicate that the shear force generated at a non-zero inclination angle induced by the INIL apparatus essentially leads to asymmetry in the polymer flow direction ultimately resulting in 3D nanopatterns with different heights. INIL removes the requirements in conventional nanolithography of either utilizing 3D templates or using multiple lithographic steps. This technique enables various 3D nanoscale devices including angle-resolved photonic and plasmonic crystals to be fabricated.  相似文献   

11.
Yao Y  Song Y  Wang L 《Nanotechnology》2008,19(40):405601
CdS nanoparticles have been successfully synthesized by using DNA networks as templates. The synthesis was carried out by first dropping a mixture of cadmium acetate and DNA on a mica surface for the formation of the DNA network template and then transferring the sample into a heated thiourea solution. The Cd(2+) reacted with thiourea at high temperature and formed CdS nanoparticles on the DNA network template. UV-vis spectroscopy, photoluminescence, x-ray diffraction and atomic force microscopy (AFM) were used to characterize the CdS nanoparticles in detail. AFM results showed that the resulted CdS nanoparticles were directly aligned on the DNA network templates and that the synthesis and assembly of CdS nanoparticles was realized in one step. CdS nanoparticles fabricated with this method were smaller than those directly synthesized in a thiourea solution and were uniformly aligned on the DNA networks. By adjusting the density of the DNA networks and the concentration of Cd(2+), the size and density of the CdS nanoparticles could be effectively controlled and CdS nanoparticles could grow along the DNA chains into nanowires. The possible growth mechanism has also been discussed in detail.  相似文献   

12.
This paper reports a study on the preparation of gold nanoparticles and silver dendrites on silicon substrates by immersion plating. Firstly, gold was deposited onto silicon wafer from HF aqueous solution containing HAuCl4. Then, the silicon wafer deposited gold was dipped into HF aqueous solution of AgNO3 to form silver coating gold film. Scanning electron microscopy reveals a uniform gold film consisted of gold nanoparticles and rough silver coating gold film containing uniform dendritic structures on silicon surface. By SERS (surface-enhanced Raman scattering) measurements, the fabricated gold and silver coating gold substrates activity toward SERS is assessed. The SERS spectra of crystal violet on the fabricated substrates reflect the different SERS activities on gold nanoparticles film and silver coating gold dendrites film. Compared with pure gold film on silicon, the film of silver coating gold dendrites film significantly increased the SERS intensity. As the fabrication process is very simple, cost-effective and reproducible, and the fabricated silver coating gold substrate is of excellent enhancement ability, spatial uniformity and good stability.  相似文献   

13.
Experimentally measured optical properties of photonic crystal LEDs are reported here. Photonic crystal and photonic quasi-crystal structures were fabricated on GaN epilayer LED wafer material using both direct-write electron beam lithography and nanoimprint lithography. Some of these structures were processed to make finished LEDs. Both electroluminescence and photoluminescence measurements were performed on these structures. Devices were characterized for their current-voltage characteristics, emission spectra, far-field emission pattern, and angular emission pattern. These results are useful for fabricating photonic crystal LEDs and assessing their operational properties.  相似文献   

14.
Cross-linked polymer replica of a nanoimprint mold at 30 nm half-pitch   总被引:1,自引:0,他引:1  
This letter reports the demonstration of a photocurable polymer process for replicating the master mold for nanoimprint lithography. The cross-linked polymer mold was fabricated directly with high fidelity from a master by imprinting and photocuring a low viscosity liquid prepolymer film spun onto a substrate. The surface of the cross-linked polymer mold can be treated using an O(2) plasma, and then vapor primed with a low surface energy mold release layer for repeatable imprinting. The imprinting results demonstrated that the cross-linked polymer mold could be faithfully used for both thermal and photocurable nanoimprint lithography.  相似文献   

15.
A lithography technique that combines laser interference lithography (LIL) and photolithography, which can be a valuable technique for the low cost production of microscale and nanoscale hybrid mask molds, is proposed. LIL is a maskless process which allows the production of periodic nanoscale structures quickly, uniformly, and over large areas. A 257 nm wavelength Ar-Ion laser is utilized for the LIL process incorporating a Lloyd's mirror one beam inteferometer. By combining LIL with photolithography, the non-selective patterning limitation of LIL are explored and the design and development of a hybrid mask mold for nanoimprint lithography process, with uniform two-dimensional nanoscale patterns are presented. Polydimethylsiloxane is applied on the mold to fabricate a replica of the stamp. Through nanoimprint lithography using the manufactured replica, successful transfer of the patterns is achieved, and selective nanoscale patterning is confirmed with pattern sizes of around 180 nm and pattern aspect ratio of around 1.44:1.  相似文献   

16.
Directed assembly of the DsRed FT protein is demonstrated on self-assembled monolayers (SAMs) on silicon substrates patterned by nanoimprint lithography. Initially, the DsRed protein is attached using electrostatic interactions on both topographical (polymer) templates with an amino functionalization and on chemically patterned (flat) substrates. In a second experiment, a patterned NiNTA SAM is used in order to attach the DsRed FT protein via supramolecular interactions, taking advantage of the histidine functionalization of the DsRed FT protein. The NTA SAM is formed on silicon oxide using a multistep covalent process. Patterning of the NTA SAM is performed using nanoimprint lithography. The DsRed FT protein is attached on the patterned NTA layer after treating this with a Ni(II) solution. Moreover, the histidine-NiNTA binding may be reversed by removing the Ni using EDTA or by competition using imidazole. The regeneration and reuse of the substrate by subsequently attaching and removing two different histidine-functionalized proteins from the patterned NTA is shown by fluorescence microscopy.  相似文献   

17.
A step and repeat UV nanoimprint lithography process on pre-spin coated resist film is demonstrated for patterning a large area with features sizes down to sub-15 nm. The high fidelity between the template and imprinted structures is verified with a difference in their line edge roughness of less than 0.5 nm (3σ deviation value). The imprinted pattern's residual layer is well controlled to allow direct pattern transfer from the resist into functional materials with very high resolution. The process is suitable for fabricating numerous nanodevices.  相似文献   

18.
Satellite-patterns aggregate structures of gold nanoparticles were fabricated by the inducing pi-pi stacking interactions. The self-assembly process of satellite-patterns was tuned by the controlling ligand exchange on the surface of spherical gold nanoparticles, which provide a novel concept and an efficient method for controlling self-assembly of gold nanoparticles. With increasing the porphyrin alkanethiol ratio (r) of gold nanoparticles, the self-assembly induces to form the larger satellite-structures. The study indicates that exchange process of tetra-n-octylammonium bromide molecules and porphyrin alkanethiol molecules results in the formation of satellite-pattern structures with topological features. Nonlinear optical properties of porphyrin alkanethiol capped gold nanoparticles of toluene solution were measured using the Z-scan technique, and its third-order nonlinear optical susceptibility (chi(3)) is calculated as 0.9 x 10(-13) esu, presented the third-order nonlinear optical properties. The well-ordered assembly of gold nanoparticles exhibits controlled the third-order nonlinear optical properties, which can be enhanced with the increasing of the porphyrin alkanethiol ratio in systems.  相似文献   

19.
Ultraviolet nanoimprint lithography (UV-NIL) is a high volume and cost-effective patterning technique with sub-10 nm resolution. It has great potential as a candidate for next generation lithography. Using UV-NIL, nanowire patterns were successfully fabricated on a four-inch silicon-on-insulator (SOI) wafer under moderate conditions. The fabricated nanowire patterns were characterized by FE-SEM. Its electrical properties were confirmed by semiconductor parameter analysis. Monoclonal antibodies against beta-amyloid (1-42) were immobilized on the silicon nanowire using a chemical linker. Using this fabricated silicon nanowire device, beta-amyloid (1-42) levels of 1 pM to 100 nM were successfully determined from conductance versus time characteristics. Consequently, the nanopatterned SOI nanowire device can be applied to bioplatforms for the detection of proteins.  相似文献   

20.
Self-organized formation of uniform coating of semiconductor substrate by metal nanoparticles offers a convenient and efficient access to large-scale arrays of uniform metal-semiconductor nanostructures. We used a cheap and facile method of photoinduced chemical gold deposition from an aqueous or alcohol gold salt solution onto semiconductor surface (GaAs, InP). By controlling of both the solution composition and the deposition conditions, gold particles of 10-50 nm in diameter were obtained and the gold covering degree of the semiconductor surface was varied in a wide range. Morphology of the nano/micro structures formed was characterized by atomic force microscopy and scanned electron microscopy with local element analysis. The investigations show that the semiconductor surface patterning can be used for the selective deposition of gold nanoparticles, because they are located predominantly at the tops of the microrelief. We have used specially textured by the anisotropic chemical etching microrelief surfaces of semiconductor single crystal as templates and have obtained nanoparticle arrays in the shape of 1D systems of near parallel quasiperiodical wires. For the periodic 1D array of metal nanowires built into the air-semiconductor interface the spectral and angular dependencies of the transmittance/reflectance of the polarized light have been obtained theoretically using differential formalism. These dependencies demonstrate non-monotonic behaviour at surface plasmon polariton excitation conditions and show possibility of designing functional subwavelength devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号