共查询到19条相似文献,搜索用时 78 毫秒
1.
采用模糊聚类分析方法,应用隶属度来描述负荷与影响负荷变化因素之间的关系,得到一批与预测日在样本信息上类似的历史日;改进RBF网络的训练算法,增强RBF网络的局部逼近能力和泛化能力,采用由模糊聚类分析获得的样本对RBF网络进行训练,在不需大量训练样本的前提下实现对短期负荷的预测。对浙江省某地区电网的实际负荷数据仿真结果表明:该方法预测的日平均相对误差为1.91%,预测准确度为97.41%。 相似文献
2.
3.
基于模糊聚类的神经网络短期负荷预测方法 总被引:10,自引:12,他引:10
针对电力负荷的特点,综合考虑天气、日类型、历史负荷等对未来负荷变化的影响,提出了一种新的短期负荷预测方法。通过模糊聚类选取学习样本,采用反向传播算法,对24点每点建立一个预测模型。该方法充分发挥了神经网络和模糊理论处理非线性问题的能力,提高了学习效能,在负荷平稳的季节和负荷波动较大的季节都具有较好的预测精度。 相似文献
4.
基于模糊聚类识别及统计相关的短期负荷预测 总被引:5,自引:4,他引:5
应用模糊聚类理论,通过对负荷历史数据进行聚类和隶属度分析,依据模糊聚类和模糊模式识别、类别(或级别)变量特征值与概率统计相关分析等模型,根据模糊聚类参数与预测因子的前期特征值,确定相应的类别变量特征值,建立类别变量特征值与预测对象之间的相关关系,利用此相关关系进行负荷预测。应用隶属度来描述负荷与影响负荷因素之间的相关关系,可以同时考虑多种影响负荷因素,在算法上只是隶属度矩阵的阶数发生变化,预测过程简单明了。实践结果表明,此方法具有较高的预测精度,能较好地适应不同地区的负荷特性。 相似文献
5.
一种电力系统短期负荷预测的新方法 总被引:5,自引:0,他引:5
依据模糊聚类理论,提出一种短期负荷预测的新方法,应用相应的隶属度来描述负荷与影响负荷因素之间的关系。实践表明:该方法可以较多的考虑各种影响因素,从而较大地提高了预测的精度。 相似文献
6.
针对传统数据挖掘算法(神经网络和支持向量机)进行短期负荷预测容易陷入局部最优,模型难以确定等问题,提出一种模糊聚类技术与随机森林回归算法结合的短期负荷预测方法。基于模糊聚类技术选取相似日的方法,考虑负荷的周期性变化特征,利用样本输入进行样本聚类,选取同类数据作训练样本,建立随机森林负荷预测模型。实例中负荷数据采用安徽省某地的历史负荷,用上述方法对该地区的日24小时负荷进行预测,并与传统的支持向量机和BP神经网络方法进行比较,验证了该方法的有效性。 相似文献
7.
针对BP网络的缺陷,提出了一种基于RBF神经网络的短期负荷预测方法,利用遗传算法训练神经网络,使神经网络以较快的收敛速度和较大的概率得到了最优解。实例研究结果表明该方法可以取得较高的预测精度。 相似文献
8.
提出了一种免疫聚类径向基函数神经网络(ICRBFNN)模型来预测电力系统短期负荷。在ICRBFNN的设计中,根据共生进化和免疫规划原理,提出了共生进化免疫规划聚类算法,该算法可以自动确定RBF网络隐层中心的数量和位置,并采用递推最小二乘法确定网络输出层的权值。对华东某市进行的电力系统短期负荷预测表明,与传统的径向基函数神经网络(RBFNN)预测方法相比,ICRBFNN方法具有更高的预测精度和更短的训练时间。 相似文献
9.
10.
针对电力系统短期负荷预测问题,考虑到气象因素对负荷的影响,提出了一种模糊神经网络的短期负荷预测方法,首先根据评价函数选取相似日学习样本,然后利用隶属函数对影响负荷的特征因素向蜈的分量进行模糊处理,采用反向传播算法,对24点每点建立一个预测模型。提高了学习效能,本方法适合在短期负荷预测中使用,具有较好的预测精度。 相似文献
11.
基于小波网络的短期负荷预测方法 总被引:5,自引:0,他引:5
提出一种基于小波网络的短期负荷预测模型,小波网络结合了小波变换良好的时频局域性质和神经网络的自学习能力,因此具有比神经网络更灵活的函数逼近能力,同时有效地改善了神经网络难于合理确定网络结构、存在局部最优等缺陷,算例表明,这种模型是快速准确的。 相似文献
12.
在分析了某地区日平均负荷曲线的年周期性、周周期性、日周期性的基础上提出了每日24个整点负荷值的分段预测模型.根据该模型建立相应的RBF神经网络进行预测.并将预测结果与实际负荷值、由传统的BP网络模型得到的结果分别进行了对比分析,表明这种模型结合RBF神经网络的预测效果具有较高的精度,具备了一定的实用价值. 相似文献
13.
在分析了某地区日平均负荷曲线的年周期性、周周期性、日周期性的基础上提出了每日24个整点负荷值的分段预测模型。根据该模型建立相应的RBF神经网络进行预测。并将预测结果与实际负荷值、由传统的BP网络模型得到的结果分别进行了对比分析,表明这种模型结合RBF神经网络的预测效果具有较高的精度,具备了一定的实用价值。 相似文献
14.
提出了一种基于RBF神经网络的未来24 h风电功率直接预测方法。为克服传统聚类算法局部寻优的缺陷,基于模糊C-均值聚类算法,提出了一种将遗传算法、模拟退火算法和模式识别技术相结合的模糊聚类算法。基于某风电场的实测数据,采用所提出的模糊聚类算法和几种常用方法分别确定径向基函数的中心,并采用最小二乘法解决权值学习问题。预测结果表明了基于RBF神经网络的风电功率预测方法能够有效提高预测精度,且证明了所提出的模糊聚类算法的优越性。 相似文献
15.
基于神经网络-模糊推理综合模型的短期负荷预测 总被引:3,自引:0,他引:3
针对由于神经元网络泛化能力不足等原因造成的预测精度不高甚至出现坏数据从而难以适用于负荷波动厉害的电网情况,提出一种基于神经网络-模糊推理综合模型的短期负荷预测方法。该方法结合了神经网络和模糊推理的优点,通过模糊推理来修正神经网络输出的预测结果,能有效地提高预测精度。特别是对于受天气影响比较明显而天气变化又比较剧烈的电网,能有效防止不合理预测结果的出现。在武汉电网的实际运行情况说明了本算法的有效性。 相似文献
16.
电力负荷数据具备时序性和非线性特征,长短时记忆神经网络(LSTM,long short-term memory)可以有效处理上述数据特性。然而LSTM算法性能对预置参数具有极大的依赖性,依靠经验设定的参数会使模型具有较低的泛化性能,降低了预测效果。为解决上述问题,提出非线性动态调整惯性权重粒子群算法(NIWPSO,nonlinear dynamic inertia weight strategy particle swarm optimization)与LSTM相结合的预测模型NIWPSO-LSTM。利用非线性动态调整惯性权重的方法来提升PSO的全局寻优能力,再通过NIWPSO对LSTM的参数进行优化。实验结果表明,NIWPSO-LSTM预测精度要远高于其他模型,验证了所提方案的可行性。 相似文献
17.
电力负荷预测对电网的经济运行至关重要,为提高短期负荷预测精度并降低混合神经网络模型的训练时间,提出了一种基于多层感知器(MLP)的基础子网、简单循环单元(SRU)与主成分分析(PCA)的短期电力负荷预测模型。首先,考虑影响电力负荷变化的各种因素,建立负荷预测输入特征集;其次,利用PCA对输入网络的部分特征进行变换并降维;最后,将经过PCA处理后得到的全新数据信息作为模型的输入,并结合Adam梯度下降算法进行训练,输出负荷预测的结果。通过仿真实验结果表明,包含SRU的混合模型在全部测试集样本上的MAPE为2.126%,远低于仅有子网的单一模型与包含DNN的混合模型,而与包含LSTM的混合模型相比,训练时间却降低了22.74%,同时PCA的应用也使得模型的收敛速度加快,极大地减小了训练轮数。 相似文献
18.
基于改进型BP神经网络的短期电力负荷预测 总被引:2,自引:1,他引:2
科学、准确的短期电力负荷预测有利于提高电力系统运行的经济性和安全性,向用户提供高质量的电力。提出一种基于改进型BP神经网络的短期负荷预测方法,并充分考虑建模时复杂气候敏感因素的影响,对输入校本的选取、预测模型的建立进行了论述。算例表明所提出方法具有较高的预测精度,负荷预测结果的相对误差小于3.63%。 相似文献
19.
基于模糊聚类与函数小波核回归的短期负荷预测方法 总被引:2,自引:0,他引:2
短期负荷预测日益成为智能电网的重要课题。将历史日负荷序列表示成等负荷段组成的子序列集合,基于模式相似性方法,采用模糊聚类与函数型小波核非参数回归(FWKNR)相结合的组合预测算法。FWKNR将预测日负荷表示成历史日相应负荷段的加权平均值,将与参考段更相似的段赋予更高权重,并基于离散小波变换的形状相似性度量,采用N-WE计算权重;由预测日各分段预测快速完成日预测。模糊聚类针对单一用户历史负荷进行典型负荷模式的分类预处理,并识别与预测日有更相似行为模式约减的有效训练样本集合参与模型预测。基于某地区实际负荷数据,实验比较分析验证了组合算法的优越性。 相似文献