首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The suspensions of titania nanoparticles in different alcohols (methanol, ethanol and butanol) were prepared using triethanolamine (TEA) as a dispersant. The optimum concentration of TEA was 16.67, 8 and 0.33 mL/L in methanol, ethanol and butanol, respectively. Two component suspensions of titania (20 g/L) and carbon nanotubes (CNTs) (0.1, 0.2, 0.5 and 1 g/L) were prepared in different alcohols without and with optimum concentration of TEA. The finer and positively charged titania nanoparticles were heterocoagulated on the surface of coarser and negatively charged CNTs and generated the titania–CNT composite particles with the net positive charge. In the presence of TEA, titania nanoparticles completely covered CNTs surface due to their higher positive surface charge. At same CNT concentration, the deposition rate was faster for suspensions with TEA additive due to the faster mobility of the composite particles. The photocatalysis efficiency of coatings for methylene blue degradation increased as CNTs were incorporated in their microstructure.  相似文献   

2.
Hydroxyapatite (HA) coatings with controlled porosity were prepared by electrophoretic deposition (EPD) method. Carbon black (CB) particles were used as the sacrificial template (porogen agent). Two component suspensions containing different concentrations of HA and CB particles were prepared in isopropanol. It was found that the finer and positively charged HA nanoparticles are heterocoagulated on the coarser and negatively charged CB particles to form CB–HA composite particles with net positive charge. The deposition rate from the suspensions with WR (CCB/CHA ratio) of 0.25 was faster than that of those with WR: 0.5 at initial times of EPD. However the situation was reversed at longer EPD times. It was also found that the amount of porosity in the coatings increases as the CB concentration in the suspension increases (15%, 24%, 31%, 43% for the coatings deposited from the suspensions with 20 g/L HA nanoparticles and 0, 5, 10 and 20 g/L CB particles, respectively).  相似文献   

3.
Yttria stabilized zirconia (YSZ) coatings were produced from a YSZ suspension in acetylacetone (ACAC) using electrophoretic deposition (EPD) and then sintered with substrate constraint at 1200 and 1300 °C. Before EPD, the operational pH of the suspension was adjusted by addition of acetic acid or triethanolamine (TEA) base. The effect of suspension pH on the deposition of EPD coatings was studied with respect to the suspension stability, coating density and microstructure. Results showed that the zeta potential had a high positive value on both sides of the iso-electric point (IEP). This probably resulted from the adsorption of TEA, detected by Fourier transform infrared spectroscopy. Three alkalies with different molecular structures were compared and the effect of their molecule length on the interparticle repulsion was discussed. Based on this, particle interactions were estimated for different pH suspensions. The reduced particle coagulation increased the packing density of the EPD coatings from 38% at pH 7.4 to 53% at pH 8.4. Therefore, subsequent sintering of coatings was promoted. The sinterability was evaluated by micro-hardness and microstructure. After sintering at 1200 °C, coatings made in pH 8.4 suspensions obtained a hardness of 786 MPa and had fewer big pores than coatings fabricated in pH 7.4 suspensions that had a hardness of 457 MPa.  相似文献   

4.
The alcoholic suspensions of titania nano-particles were prepared using the methanol, ethanol, isopropanol and butanol as the solvents as well as triethanolamine (TEA) as an dispersant. The colloidal stability of suspensions, both in the absence as well as presence of TEA, was studied by measuring the zeta potential, sedimentation, pH and electrical conductivity of suspensions, dispersant adsorption and particles size distribution. Results showed that in the absence of TEA, the stability of the suspensions increases with the molecular size of alcohol (from methanol to butanol), while the zeta potential decreases. It was also observed that with the addition of TEA up to the optimum dosage (4 mL/L and 1.33 mL/L for isopropanolic and butanolic suspensions, respectively), the stability of isopropanolic and butanolic suspensions increases; however, its addition into the methanolic and ethanolic suspensions, even at very low concentrations in the order of 0.1 mL/L, results in the quick settling of the particles in the suspension. It was found that the mechanism of TEA action as a dispersant, in the isopropanolic and butanolic suspensions, is its protonation and then adsorption on the titania nano-particles, which yields an electrostatic and some steric stabilization mechanisms.  相似文献   

5.
《Ceramics International》2017,43(5):4663-4669
Three component suspensions of hydroxyapatite (HA), chitosan and CNTs were prepared in ethanol base solution (15 vol% water and 0.05 vol% acetic acid). The adsorption of HA nanoparticles on CNTs was investigated by FTIR and SEM analysis. It was found that HA nanoparticles are adsorbed on CNTs via chemical bonding between -NH2 groups of chitosan (adsorbed on their surface) and -COOH groups of CNTs. Current density as well as kinetics of EPD was studied at 60 V. It was found that current density increases or remains nearly constant during EPD due to the rise in water electrolysis as deposit grows on the substrate. Deposition weight against EPD time showed a linear trend due to the absence of any voltage drop over the deposit during EPD. The incorporation of chitosan and CNTs in the microstructure of coatings was confirmed by TG/DTA and SEM analysis. CNTs exhibited high efficiency in reinforcing the microstructure of coatings and preventing from their cracking. CNTs incorporation in the coatings improved their mechanical properties (adhesion strength, hardness and elastic modulus) and corrosion resistance.  相似文献   

6.
The suspensions of titania nanoparticles were prepared in different alcohols (methanol, ethanol, isopropanol and butanol) using polyethyleneimine (PEI) as dispersant. The results of sedimentation, conductivity, zeta potential, FTIR and thermal analysis showed that PEI macromolecules are protonated in the suspensions and then adsorbed on the particles enhancing their positive surface charge and so colloidal stability. Optimum concentration of PEI (PEI*) was lower in large molecular size alcohols due to its higher adsorption efficiency. PEI* was 0.75, 0.5, 0.5 and 0.25?g/l in methanolic, ethanolic, isopropanolic and butanolic suspensions, respectively. Electrophoretic deposition (EPD) was performed at 60?V in different alcoholic suspensions. EPD rate was the fastest in the suspensions with PEI* due to the highest mobility of particles. In contrast to the coatings deposited for 1?min from isopropanolic and butanolic suspensions, those deposited at same conditions from methanolic and ethanolic ones severely cracked during drying owing to their higher thickness and lower PEI contents (acting as the binder). The coatings deposited from methanolic and ethanolic suspensions with PEI* had finer and rougher microstructures. The sintered coating deposited at 60?V for 10?s from ethanolic suspension with PEI* had crack-free microstructure with the thickness of ≈?130?μm. This coating degraded ≈?24% of methylene blue from its aqueous solution (30?ml with the concentration of 5?mg/l) within 2?h under UV illumination. Photodegradation of MB on the surface of titania coating obeyed the first order kinetics law.  相似文献   

7.
This study describes the preparation, surface imaging and tribological properties of titania coatings modified by zirconia nanoparticles agglomerated in the form of island-like structures on the titania surface. Titania coatings and titania coatings with embedded zirconia nanoparticles were prepared by the sol–gel spin coating process on silicon wafers. After deposition the coatings were heat-treated at 500 °C or 1000 °C. The natural tendency of nanoparticles to form agglomerates was used to build separated island-like structures unevenly distributed over the titania surface having the size of 1.0–1.2 μm. Surface characterization of coatings before and after frictional tests was performed by atomic force microscopy (AFM) and optical microscopy. Zirconia nanoparticles were imaged with the use of transmission electron microscopy (TEM). The tribological properties were evaluated with the use of microtribometer operating in ambient air at technical dry friction conditions under normal load of 80 mN. It was found that nanocomposite coatings exhibit lower coefficient of friction (CoF) and considerably lower wear compared to titania coating without nanoparticles. The lowering of CoF is about 40% for coatings heated at 500 °C and 33% for the coatings heated at 1000 °C. For nanocomposites the wear stability was enhanced by a factor of 100 as compared to pure titania coatings. We claim that enhanced tribological properties are closely related to the reduction of the real contact area, lowering of the adhesive forces in frictional contacts and increasing of the composite hardness. The changes in materials composition in frictional contact has secondary effect.  相似文献   

8.
Electrophoretic deposition (EPD) has gained increasing interest for the deposition of materials such as TiO2, carbon nanotubes and trioctylphosphine oxide (TOPO)-capped CdSe nanoparticles. In this study, a mercaptoundecanoic acid (MUA) CdSe nanoparticle film was formed by electrophoretic deposition. A colloidal suspension of TOPO-capped CdSe nanoparticles was prepared by the hot injection method, followed by ligand exchange to produce MUA-capped CdSe nanoparticles. As-prepared MUA-capped CdSe nanoparticles were washed using ethyl acetate and ethyl ether. Then, the washed nanoparticles were resuspended in ethanol and immediately used for EPD. A CdSe nanoparticle film measuring 2.75 µm in thickness was deposited at an applied voltage of 5 V and deposition time of 5 min.  相似文献   

9.
《Ceramics International》2017,43(9):7321-7328
Yttria-Stabilized Zirconia (YSZ) is the most common material for thermal barrier coatings. Suspensions of 3 mol% YSZ nanoparticles in acetone medium have been prepared in presence of different amounts of iodine as dispersant. Size distribution of particles in the suspensions and zeta potential were measured as a function of dispersant concentration. Adding 1.2 g/l iodine was found to be effective for the dispersion of YSZ nanoparticles in acetone. The stability of YSZ suspension in acetone increased with iodine content increasing until reached 1.2 g/l. Mean diameter of particles and zeta potential of the YSZ suspension in acetone were 912 nm and 2.4 mV respectively, and with addition of 1.2 g/l iodine shifted to 111.6 nm and 50.2 mV respectively. Electrophoretic deposition (EPD) process has been carried out from this suspension at different applied voltages and deposition times. A uniform green coating was obtained at voltage of 6 V and deposition time of 2 min the thickness of the green coating is measured about 25 µm.  相似文献   

10.
Two‐component suspensions of titania and halloysite nanotubes (HNTs) were prepared in ethanol with 0.5 g/L (optimum concentration) of polyethyleneimine (PEI) and different wt% of HNTs. Kinetics of Electrophoretic deposition (EPD) decreased with increasing the HNTs content in suspensions due to their less mobility compared with titania particles. HNTs reinforced the microstructure of coatings and reduced or completely prevented from cracking during drying and heat‐treatment steps. Removal of methylene blue (MB) via adsorption by HNTs coatings was faster than its photocatalytic degradation by titania coating. Dispersion of HNTs (up to ≈30 wt%) in the matrix of titania resulted in the synergistic catalytic effect in MB removal. The synergistic effect was because of the shorter traveling distance of MB molecules adsorbed on HNTs toward the photocatalytic active site of titania particles in composite coatings. However, the synergistic effect was destroyed with increasing the HNTs content in coating. Difference between the amount of MB removed by titania and composite coatings increased at longer times (≥60 minutes). Mass transfer of MB adsorbed on HNTs toward the photocatalytic active sites of adjacent titania particles can compensate the decline in the mass transfer from solution at longer times.  相似文献   

11.
The role of particle concentration in electrophoretic deposition (EPD) was investigated with two different suspension systems. The first system consisted of positively charged TiO2 nanoparticles dispersed in isopropanol with 1 vol% water. The second system consisted of negatively charged polystyrene (PS) microbeads dispersed in isopropanol. Constant voltage EPD was performed using suspensions with variable particle concentration (0.013–0.43 vol% TiO2 and 0.06–11.4 vol% PS). Threshold concentration values were identified for both systems after EPD at 100 V (250 V cm?1) for 1 min. Below these values the deposited mass deviated from the trend dictated by Hamaker's equation. Higher applied voltages and longer deposition times were tested and the results suggested that the threshold concentration did not depend on those parameters. A phenomenological model of particle deposition was proposed, which accounts for the local electrochemical conditions close to the substrate in relation to particle size.  相似文献   

12.
《Ceramics International》2017,43(15):11820-11829
Titanium and its alloys are the biomaterials most frequently used in medical engineering, especially as parts of orthopedic and dental implants. The surfaces of titanium and its alloys are usually modified to improve their biocompatibility and bioactivity, for example, in connection with the deposition of hydroxyapatite coatings.The objective of the present research was to elaborate the technology of electrophoretic deposition (EPD) of nanohydroxyapatite (nanoHAp) coatings decorated with silver nanoparticles (nanoAg) and to investigate the mechanical and chemical properties of these coatings as determined by EPD voltage and the presence of nanoAg. The deposition of nanoHAp was carried out at two voltage values, 15 and 30 V. The decoration of nanoHAp coatings with nanoAg was carried out using the EPD process at a voltage value of 60 V and a deposition time of 5 min. The thickness of the undecorated coatings was found to be 2.16 and 5.14 µm for applied EPD voltages of 15- and 30-V, respectively. The release rate of silver nanoparticles into an artificial saliva solution increased with exposure time and EPD voltage. The corrosion current, between 1 and 10 nA/cm2, was significantly higher for undecorated nanoHAp coatings and close to that of the substrate for decorated nanoHAp coatings. The hardness of the undecorated nanoHAp coatings obtained at 15 and 30 V of EPD voltage attained 0.2245±0.036 and 0.0661±0.008 GPa, respectively. Resistance to nanoscratching was higher for thicker coatings. The wettability angle was lower for coatings decorated with nanoAg.  相似文献   

13.
Isopropanolic Suspensions of HA nanoparticles (20 g/L) plus various concentrations of carbon nanotubes (CNTs) were prepared using Tris and triethanolamine as dispersant. The positively charged HA nanoparticles were heterocoagulated on the negatively charged CNTs and generated the HA‐CNT composite particles with net positive surface charge. The heterocoagulation was more intensive in dispersant‐containing suspensions (DCS) due to the higher zeta potential of HA nanoparticles in them. HA‐CNTs particles can be rotated and aligned parallel to electric field as a result of torque exerted on them due to the generation of a dipole moment in CNTs during electrophoretic deposition (EPD). The mobility of HA‐CNTs particles aligned parallel to electric field is ≈50% higher than that of HA nanoparticles leading to the faster EPD from DCS when CNTs are added into them. CNTs more efficiently reinforced the coatings deposited from DCS due to the stronger electrostatic bonding between CNTs and HA nanoparticles in them.  相似文献   

14.
《Ceramics International》2017,43(15):11885-11897
In the present study, HA–YSZ nanostructured composites were deposited on Ti–6Al–4 V substrates by electrophoretic deposition of suspensions containing 0, 10, 20 and 40 wt% YSZ. The stability of each suspension was determined by applying response surface methodology, DLVO theory and zeta potential measurement for different YSZ contents and dispersant concentrations. The maximum zeta potential and electromobility of suspended particles was obtained for the suspension with 20 wt% YSZ. The electrophoretic deposition of HA–YSZ nanostructured composites was carried out at a constant voltage of 20 V for 120 s. The deposition kinetics was studied based on a mass-charge correlating approach under ranges of voltage (20–60 V), time (30–300 s) and wt% YSZ (0–40). The as–deposited and sintered HA–YSZ coatings were characterized by SEM, XRD, DSC–TG and FT–IR analyses. The micro-scratch behavior of coated samples indicated the highest critical contact pressures of crack initiation, Pc1 = 4.50 GPa, crack delamination, Pc2 = 5.14 GPa and fracture toughness, KIC = 0.622 MPa m1/2 for HA-20 wt% YSZ sample. The results of potentiodynamic polarization measurements showed that the implementation of 20 wt% YSZ could efficiently decrease the corrosion current density and corrosion rate of coated samples, while corrosion potential and linear polarization resistance were increased.  相似文献   

15.
Zirconia fine particles were prepared by ultrasonic spray pyrolysis (USP) and employed as a substrate for titanium/titania coating by ultrasonochemistry. The effects of several process factors on the characteristics of the prepared particles were investigated and the particles were then characterized by various techniques. This substrate was coated with various titanium concentrations (0.025–0.1 M) for two ultrasonication time periods (30 min, 2 h) by sonochemistry, and finally calcined at 1100 °C. Raman spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), particle size analysis (PSA), Fourier transformation infrared spectroscopy (FT-IR) and inductively coupled plasma-atomic emission spectroscopy (ICP-AES) comprised the techniques used to characterize them. The particles were prepared in a monodispersed spherical form with no interior cavity; their average size was shown to be 0.62 μm before calcination and 2.57 μm after calcination. The titania surface coating acted to partially stabilize the particles to a tetragonal phase. Based on the analytical results, the optimum conditions for preparing the particles were shown to be 7.5 wt% of titania as an initial solution concentration and 0.5 h of coating time.  相似文献   

16.
《Ceramics International》2016,42(6):6906-6913
In this study, zinc oxide nanoparticles were synthesized by the hydrothermal microwave-assisted method, followed by its deposition using electrophoretic deposition (EPD) method. An investigation of the characteristics of the synthesized nanoparticles was carried out using X-Ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FTIR). The morphology and size distribution of the nanoparticles were examined by the images obtained from Transmission Electron Microscope (TEM). The in-situ variations of mass and current density were investigated during the EPD. The effect of different parameters such as the solvent type at various voltages (20 and 40 V) was investigated on EPD kinetics. By increasing the voltage from 20 to 40 V in the methanol, the mass of the deposited film was increased up to about 38%. Similarly, in the ethanol, an increase equal to 39% was observed. The morphology and porosity of deposited nanoparticles were studied by analyzing the images of the Scanning Electron Microscope (SEM). It was observed that the porosity of the film in the ethanol was more than the methanol, at similar potentials. The increase in porosity at the voltage of 20 V was almost 3.1% and at 40 V, it was approximately 4.4% with respect to methanol. Initial current densities in methanol at 20 and 40 V were about 18 and 29% more than ethanol, respectively.  相似文献   

17.
Polyimide/titania (PI/TiO2) nanocomposite films have been successfully fabricated through the in situ formation of TiO2 within a PI matrix via sol–gel method. Poly(amic acid) (PAA), which is the precursor of PI, was successfully synthesized by mixing pyromellitic dianhydride (PMDA), with equimolar amount of a diamine monomer having a pendent benzoxazole unit and two flexible ether linkages in N,N-dimethylformamide (DMF) solvent. Tetraethyl orthotitanate [Ti(OEt)4] and acetylacetone were then added to the resulted PAA. After imidization at high temperature, PI/TiO2 hybrid films were formed. The structure and morphology of the hybrid nanocomposites with different titania contents (0 wt%, 5 wt%, 10 wt%, and 15 wt%) were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, and transmission electron microscopy. The results indicate that the TiO2 nanoparticles were homogeneously dispersed in the hybrid films. The thermogravimetric analysis of nanocomposites confirms the improvement in the thermal stability with the increase in the percentage of titania nanoparticle. Transmission electron microscopy showed that the nanoparticles with an average diameter of 25–40 nm were dispersed in the polymer matrix.  相似文献   

18.
Modification process has been conducted on commercial nuclear graphite IG-110 (Toyo Tanso Co., Ltd., Japan) by impregnation and pyrolysis of polycarbosilane (PCS) solution for getting the modified IG-110 (M-IG-110) coated by dense SiC coating for molten salt reactor. The microstructure and properties of graphite were systematically investigated and compared before and after the modification process. Results indicated that the M-IG-110 possessed of more excellent integrated properties including molten salt barrier property and oxidation resistance than bare IG-110 due to the filling effect of SiC particles in the pores of M-IG-110 and dense SiC coating adhering to the surface of M-IG-110. The fluoride salt infiltration amount of M-IG-110 under 5 atm was only 1.1 wt%, which was much less than 14.9 wt% for bare IG-110. The SiC coating derived from PCS exhibited remarkable compatibility with graphite substrate under high temperature and gave rise to excellent oxidation resistance of M-IG-110.  相似文献   

19.
《Ceramics International》2017,43(15):12126-12137
Mechanical resistance of Al2O3 + TiO2 nanocomposite ceramic coating deposited by electrostatic spray deposition method onto X10CrAlSi18 steel to thermal and slurry tests was investigated. The coating was produced from colloidal suspension of TiO2 nanoparticles dispersed in 3 wt% solution of Al2(NO3)3, as Al2O3 precursor, in ethanol. TiO2 nanoparticles of two sizes, 15 nm and 32 nm, were used in the experiments. After deposition, coatings were annealed at various temperatures, 300, 1000 and 1200 °C, and next exposed to cyclic thermal and slurry tests. Regardless of annealing temperature and the size of TiO2 nanoparticles, the outer layer of all coatings was porous. The first five thermal cycles caused a rapid increase of aluminum content of the surface layer to 30–37 wt%, but further increase in the number of thermal cycles did not affect the aluminum content. The oxidation rate of coating-substrate system was lower during the thermal tests than during annealing. The oxidation rate was also lower for smaller TiO2 particles (15 nm) forming the coating than for the larger ones (32 nm). The protective properties of Al2O3 + TiO2 coating against intense oxidation of substrate were lost at 1200 °C. Slurry tests showed that coatings annealed at 1000 °C had the best slurry resistance, but thermal tests had weakened this slurry resistance, mainly due to decreasing adhesion of the coating.  相似文献   

20.
《Ceramics International》2016,42(9):10838-10846
Coatings of titania (TiO2) and "titania–hydroxyapatite" were prepared by oxidation of commercially pure titanium VT1-00 using induction heat treatment (IHT), followed by modification with colloidal hydroxyapatite (HAp) nanoparticles. The IHT treatment was performed at temperatures within 600–1200 °C for 300 s. According to the results of scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive X-ray fluorescent analysis (EDX), nanoindentation and in vitro testing, titania coatings of high morphological heterogeneity, and high mechanical properties and biocompatibility were formed on the titanium surface after IHT. The coatings were found to consist of nano- and submicron crystals of oval, needle-like, plate and prismatic shapes. A subsequent modification with HAp nanoparticles of the coated titanium substrate leads to accelerated formation of mechanically strong oxidebioceramic composite coatings. It was established that the porous oxide coatings modified with nanoparticles of HAp that were formed at temperatures from 800 to 1000 °C and holding for at least 30 s had a high biocompatibility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号