首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
A novel oscillatory pressure sintering (OPS) process to consolidate high-quality pure alumina ceramics is reported. The microstructure of the ceramics prepared by OPS develops into a higher final density, a smaller and a narrower distribution of grain sizes compared with those prepared by conventional pressureless sintering (PS) and hot-pressing (HP) processes. Enhanced mechanical properties of alumina ceramics were investigated by OPS process. The bending strength, hardness and elastic modulus of the OPS specimen reached about 546 MPa, 19.1 GPa and 374 GPa, respectively, i.e values significantly higher than that of the specimens by PS and HP. XRD analysis indicates the strengthening of atomic bonds aided by oscillatory pressure. The results suggest OPS to be an effective technique for preparing high-quality pure alumina ceramics.  相似文献   

2.
Al2O3-YAG (50 vol.%) nanocomposite powders were prepared by wet-chemical synthesis and characterized by DTA-TG, XRD and TEM analyses. Amorphous powders were pre-heated at different temperatures (namely 600 °C, 800 °C, 900 °C and 1215 °C) and the influence of this thermal treatment on sintering behavior, final microstructure and density was investigated. The best performing sample was that pre-calcined at 900 °C, which yields dense bodies with a micronic/slightly sub-micronic microstructure after sintering at 1600 °C. A pre-treatment step to induce controlled crystallisation of the amorphous powder as well as a fast sintering procedure for green compacts, were also performed as a comparison.Finally, the previously stated thermal pre-treatment of the amorphous product was coupled to an extensive mechanical activation performed by wet planetary/ball milling. This procedure was highly effective in lowering the densification temperature, so that fully dense Al2O3-YAG composites, with a mean grain size smaller than 200 nm, were obtained by sintering in the temperature range 1370–1420 °C.  相似文献   

3.
《Ceramics International》2016,42(4):5339-5344
Dense mullite–Mo (45 vol%) composites with homogeneous microstructure have been obtained by plasma activated sintering of a mixture of Mo and mullite precursors at a relatively low temperature (1350 °C) and a pressure of 30 MPa. The mullite precursor was synthesized by a sol–gel process followed by a heat-treatment at 1000 °C. The influence of different mullite precursors on the densification behavior and the microstructure of mullite–Mo composites has been studied. The precursor powder heat-treated at 1000 °C with only Si–Al spinel but no mullite phase shows an excellent sintering activity. Following the sintering shrinkage curves, a two-stage sintering process is designed to enhance the composite densification for further reducing the sintering temperature. The study reveals that viscous flow sintering of amorphous SiO2 at low temperatures effectively enhances the densification. Moreover, microstructure of these composites can be controlled by selecting different precursors and sintering temperatures.  相似文献   

4.
ZrB2–SiC composites were fabricated by spark plasma sintering (SPS) using TaSi2 as sintering additive. The volume content of SiC was in a range of 10–30% and that of TaSi2 was 10–20% in the initial compositions. The composites could be densified at 1600 °C and the core–shell structure with the core being ZrB2 and the shell containing both Ta and Zr as (Zr,Ta)B2 appeared in the samples. When the sintering temperature was increased up to 1800 °C, only (Zr,Ta)B2 and SiC phases could be detected in the samples and the core–shell structure disappeared. Generally, the composites with core–shell structure and fine-grained microstructure showed the higher electrical conductivity and Vickers hardness. The completely solid soluted composites with coarse-grained microstructure had the higher thermal conductivity and Young's modulus.  相似文献   

5.
The α-MoO3 ceramics were prepared by uniaxial pressing and sintering of MoO3 powder at 650 °C and their structure, microstructure, densification and sintering and microwave dielectric properties were investigated. The sintering temperature of α-MoO3 was optimized based on the best densification and microwave dielectric properties. After sintering at 650 °C the relative permittivity was found to be 6.6 and the quality factor was 41,000 GHz at 11.3 GHz. The full-width half-maximum of the A1g Raman mode of bulk α-MoO3 at different sintering temperatures correlated well with the Qf values. Moreover, the sintered samples showed a temperature coefficient of the resonant frequency of ?25 ppm/°C in the temperature range from ?40 to 85 °C and they exhibited a very low coefficient of thermal expansion of ±4 ppm/°C. These microwave dielectric properties of α-MoO3 will be of great benefit in future MoO3 based materials and their applications.  相似文献   

6.
Process-tolerant SiC ceramics were prepared by pressureless sintering at 1850–1950 °C for 2 h in an argon atmosphere with a new quaternary additive (Al2O3-Y2O3-CaO-SrO). The SiC ceramics can be sintered to a > 94% theoretical density at 1800–1950 °C by pressureless sintering. Toughened microstructures consisting of relatively large platelet grains and small equiaxed grains were obtained when SiC ceramics were sintered at 1850–1950 °C. The presently fabricated SiC ceramics showed little variability of the microstructure and mechanical properties with sintering within the temperature range of 1850–1950 °C, demonstrating process-tolerant behavior. The thermal conductivity of the SiC ceramics increased with increasing sintering temperature from 1800 °C to 1900 °C due to decreases of the lattice oxygen content of the SiC grains and residual porosity. The flexural strength, fracture toughness, and thermal conductivity of the SiC ceramics sintered at 1850–1950 °C were in the ranges of 444–457 MPa, 4.9–5.0 MPa m1/2, and 76–82 Wm?1 K?1, respectively.  相似文献   

7.
The sintering behavior and the thermoelectric performance of Ca3Co4O9 multilayer laminates were studied, and a multilayer thermoelectric generator was fabricated. Compacts and multilayer samples with anisotropic microstructure and residual porosity were obtained after conventional sintering at 920 °C, whereas dense and isotropic multilayer samples were prepared by firing at 1200 °C and reoxidation at 900 °C. A hot-pressed sample has a dense and anisotropic microstructure. Samples sintered at 920 °C exhibit low electrical conductivity due to the low density, whereas the Seebeck coefficient is not sensitive to preparation conditions. However, thermal conductivity of multilayers is very low, and, hence acceptable ZT values are obtained. A transversal multilayer thermoelectric generator (TMLTEG) was fabricated by stacking layers of Ca3Co4O9 green tapes, AgPd conductor printing, and co-firing at 920 °C. The TMLTEG has a power output of 3 mW at ΔT = 200 K in the temperature interval of 25 °C to 300 °C.  相似文献   

8.
Porous Al2O3-based ceramics were successfully fabricated using ball-shaped powders by preceramic polymer process in N2 atmosphere. These results showed that the amorphous Si-O-C ceramics were formed on the surface of ball-shaped Al2O3 particles by the pyrolysis of the silicone resin during sintering in N2 atmosphere, which played a role in connecting the Al2O3 particles by forming the sintering necks. When the sintering temperatures increased from 1100 °C to 1600 °C, the formed Si-O-C ceramics still existed in the amorphous state and had no crystallization. Interestingly, the amorphous β-SiC formed at 1300 °C and its amount gradually increased with further increasing temperatures. The linear shrinkage rate of the samples varied from 0.49% to 0.73% and the weight loss rate increased from 2.01% to 10.77%. The apparent porosity remarkably varied with the range of 24.9% and 34.5%, as the bulk-density varied from 2.66 to 2.47 g/cm3. The bending strength gradually increased from 9.36 to 22.51 MPa with increasing temperatures from 1100 °C to 1500 °C, however, the bending strength remarkably decreased at 1600 °C, which was attributed to the comprehensive function of the high porosity, broken Al2O3 particles and weak connection between Al2O3 particles in the samples.  相似文献   

9.
《Ceramics International》2016,42(8):9821-9829
Since its invention, alumina ceramics have been extensively investigated for potential various applications. However, their intrinsic brittle nature is still an insurmountable obstacle when they are applied as structural components. This paper provides a simple routs to prepare ductile alumina based composites with the addition of chopped carbon fiber (Csf/Al2O3-BN). Effects of fiber length and sintering temperature on the microstructure, phase composition, mechanical properties together with fracture behavior were systematically investigated. The results showed that composites with mixed fiber lengths of 12 mm and 1 mm exhibited homogeneous microstructure and striking enhancement in mechanical performances compared with composites with other fiber length. With the increase in sintering temperature from 1500 °C to 1650 °C, interfacial bonding strength increased and interface state converted from mechanical interlocking at 1500 °C into chemical bonding at 1650 °C. Chemical reaction in the composites degraded carbon fiber properties, which resulted in the decrease in mechanical performance of the composites.  相似文献   

10.
《Ceramics International》2016,42(11):12907-12913
The microstructure analysis and mechanical characterisation were performed on a ZrC-20 wt%Mo cermet that was spark plasma sintered at various temperatures ranging between 1600 and 2100 °C under either 50 or 100 MPa of compaction pressure. The composite reached ~98% relative density for all experiments with an average grain size between 1 and 3.5 µm after densification. The nature of SPS technology caused a faster densification rate when higher compaction pressures were applied. The difference in compaction pressures produced different behaviors in densification and grain structure: 1900 °C, 100 MPa produced excessive grain growth in ZrC; 1600 °C, 50 MPa revealed a very clear ZrC grain structure and Mo diffusion between carbide grains; and 2100 °C, 50 MPa exhibited the highest overall mechanical properties due to small clusters of Mo phases across the microstructure. In fact, this particular sintering regime gave the most optimal mechanical values: 2231 HV10 and 5.4 MPa*m1/2, and 396 GPa Young's modulus. The compaction pressure of SPS played a pivotal role in the composites’ properties. A moderate 50 MPa pressure caused all three mechanical properties to increase with increasing sintering temperature. Conversely, a higher 100 MPa pressure caused fracture toughness and Young modulus to decrease with increasing sintering temperature.  相似文献   

11.
《Ceramics International》2016,42(12):13932-13943
Commercially available fused magnesia and sintered alumina sources were used to form reaction sintered spinel by solid oxide reaction route in a single firing. The effect of the addition of four different additives, namely MgCl2, LiF, AlCl3, and MnO2, at 2 wt% level was studied. Mixed oxide compositions were compacted under a uniaxial pressure of 150 MPa and then sintered between 1200 and 1600 °C. The dilatometric study and phase analysis was done to observe the spinel formation reaction. Densification study of the sintered product was done to understand the effect of additives. Cold Crushing strength and thermal shock resistance of 1600° sintered pellets were studied. Microstructural study using field emission scattered electron microscopy (FESEM) was also done to understand the grain development on sintering in the compositions and the effect of different additives on sintering. LiF and MgCl2 were found to strongly enhance the spinel formation reaction. Bulk density values were found to be lower for the additive containing batches at 1200 °C due to enhanced spinel formation but higher at 1600 °C due to greater sintering. Strength values were strongly enhanced by LiF and MnO2 due to the development of dense, compact microstructure. Also, additives containing compositions showed much higher strength retainment even after 6 cycles of thermal shock.  相似文献   

12.
ZrB2–SiC composites were prepared by spark plasma sintering (SPS) at temperatures of 1800–2100 °C for 180–300 s under a pressure of 20 MPa and at higher temperatures of above 2100 °C without a holding time under 10 MPa. Densification, microstructure and mechanical properties of ZrB2–SiC composites were investigated. Fully dense ZrB2–SiC composites containing 20–60 mass% SiC with a relative density of more than 99% were obtained at 2000 and 2100 °C for 180 s. Below 2120 °C, microstructures consisted of equiaxed ZrB2 grains with a size of 2–5 μm and α-SiC grains with a size of 2–4 μm. Morphological change from equiaxed to elongated α-SiC grains was observed at higher temperatures. Vickers hardness of ZrB2–SiC composites increased with increasing sintering temperature and SiC content up to 60 mass%, and ZrB2–SiC composite containing 60 mass% SiC sintered at 2100 °C for 180 s had the highest value of 26.8 GPa. The highest fracture toughness was observed for ZrB2–SiC composites containing 50 mass% SiC independent of sintering temperatures.  相似文献   

13.
SiC-reinforced MoSi2 composites have been successfully prepared by in situ pressureless sintering from elemental powders of Mo, Si and C. Meanwhile, the evolutions of the samples’ microstructure and phase at different temperatures were investigated by using X-ray diffraction (XRD) and scanning electron microscopy (SEM) with an energy dispersive X-ray spectrometer (EDS). It can be seen that at the temperature of 1100 °C, the main phases were Mo and Si, accompanying with a small amount of rich molybdenum products Mo5Si3 and Mo3Si. Then the main phases changed to MoSi2 and SiC when the sintering temperature reached 1300 °C. Finally we obtained MoSi2/SiC composites with well-dispersed SiC particles after sintering at the temperature of 1550 °C for 120 min. The evolution of porosity in these composites fits the porosity reduction model well developed by Pines and Bruck, which revealed the particle agglomeration in the composites. The flexural strength and fracture toughness of 10% SiC/MoSi2 composites were up to 274.5 MPa and 5.5 MPa m1/2, increased by approximately 40.8% and 30.6% compared with those of monolithic MoSi2, respectively.  相似文献   

14.
《Ceramics International》2016,42(16):18718-18723
Titanium diboride (TiB2) is a ceramic material with high mechanical resistance, chemical stability, and hardness at high temperatures. Sintering this material requires high temperatures and long sintering times. Non-conventional sintering techniques such as spark plasma sintering (SPS) can densify materials considered difficult to sinter. In this study, TiB2–AIN (aluminum nitride) composites were sintered by using the SPS technique at different sintering temperatures (1500 °C, 1600 °C, 1700 °C, 1800 °C, and 1900 °C). x-ray diffraction was used to identify the phases in the composites. mechanical properties such as hardness and indentation fracture toughness was obtained using a vickers indenter. Different toughening mechanisms were identified, and good densification results were obtained using shorter times and lower temperatures than those previously reported.  相似文献   

15.
Ultrafine grain WC-1.0 wt% carbon nanotube (CNT) composites were prepared using spark plasma sintering and the influence of sintering temperature on the properties of the composites was investigated. The specimen tested in this study achieved an optimum hardness of 22.81±0.81 GPa and fracture toughness of 8.95±0.38 MPa m1/2 after sintering at 1700 °C. On applying a sintering temperature of 1900 °C, the mechanical properties of the specimens deteriorated. Raman spectroscopic analysis results indicated that the structure of the CNTs changed and the graphite phase occurred at 1900 °C, which was responsible for the deteriorating hardness, elastic modulus, and fracture toughness. This study provides details of the transformation of the CNTs in the tungsten carbide matrix, indicating that the WC-CNT composites should be sintered at moderate temperatures.  相似文献   

16.
《Ceramics International》2016,42(3):4238-4245
High optical quality Y2O3 transparent ceramics with fine grain size were successfully fabricated by air pre-sintering at various temperature ranging from 1500 to 1600 °C combined with a post-hot-isostatic pressing (HIP) treatment using co-precipitated powders as the starting material. The fully dense Y2O3 transparent ceramic with highest transparency was obtained by pre-sintered at 1550 °C for 4 h in air and post-HIPed at 1600 °C for 3 h (the pressure of HIP 200 MPa), and it had fine microstructure and the average grain size was 0.96 μm. In addition, the in-line transmittance of the ceramic reached 81.7% at 1064 nm (1 mm thickness). By this approach, the transparent Y2O3 ceramics with fine grain size (<1.6 μm) were elaborated without any sintering aid.  相似文献   

17.
Spark plasma sintering of TiB2–boron ceramics using commercially available raw powders is reported. The B4C phase developed during reaction-driven consolidation at 1900 °C. The newly formed grains were located at the grain junctions and the triple point of TiB2 grains, forming a covalent and stiff skeleton of B4C. The flexural strength of the TiB2–10 wt.% boron ceramic composites reached 910 MPa at room temperature and 1105 MPa at 1600 °С. Which is the highest strength reported for non-oxide ceramics at 1600 °C. This was followed by a rapid decrease at 1800 °C to 480–620 MPa, which was confirmed by increased number of cavitated titanium diboride grains observed after flexural strength tests.  相似文献   

18.
Structural characterizations of two ITO ceramics that were respectively sintered at 1560 °C and 1600 °C were focused on and the results indicate that the lower sintering temperature is good for ITO ceramics to have the triangle fine grains, larger elemental concentration gradients of indium and tin and more content of In4Sn3O12 phase which displays the stronger grain orientation growth along the crystallographic direction of [0-11]. ITO films with 100 nm thickness deposited at 25 °C–230 °C were used to investigate the effect of micro-structure on the film properties. Grain orientation growth of In4Sn3O12 phase is conductive to form ITO films of columnar structure. Otherwise, uniform micro-structure and higher solubility of SnO2 in In2O3 main phase contribute to deposit ITO films of higher sheet resistance, less thickness uniformity and higher transmittance at 25 °C, smaller etching angle and lower etching rate at 230 °C.  相似文献   

19.
MgAl2O4 bulk samples were fabricated by two different approaches to investigate the effect of slip casting and sintering temperature on their transparency. Three MgAl2O4 samples containing 1 wt% LiF, as the sintering aid, were prepared by the spark plasma sintering process (SPS) at 1400 °C and 1500 °C, under 100 MPa, for 15 min. Also, another MgAl2O4 sample was prepared by slip casting followed by SPS under similar conditions. It was observed that utilizing slip casting led to more transparency (10% in the visible region and 20% in the IR region) due to the more homogeneous structure. It was also observed that by reducing the SPS temperature from 1500 °C to 1400 °C, the transparency increased (20% in the IR region) because of the lower grain growth rate at the lower temperature.  相似文献   

20.
《Ceramics International》2017,43(4):3576-3582
The wetability improvement and particle size reduction of alumina/Ni composites through mechanical alloying were addressed. Their effect on the sinterability (at high temperature), mechanical and electrical properties were studied. Al2O3 matrix nanocomposites reinforced with different volume fractions of Ni up to 10 vol% were prepared by mechanical alloying. The milled powders were cold pressed and sintered at different firing temperatures up to 1600 °C. The morphology of powders and the microstructure of sintered bodies were investigated by transmission electron microscopy (TEM) and scanning electron microscopy (SEM) coupled with energy dispersive spectroscopy (EDS), respectively. Furthermore, relative density, apparent porosity, mechanical properties and electrical resistivity of the sintered composites were investigated. The results revealed that Al2O3 matrix was successfully coated with Ni thin film through mechanical alloying; the thickness of coat was increased with increasing the Ni content. Moreover, the increasing of both Ni content and sintering temperature up 1600 °C, led to a remarkable increase in the relative density and facture toughness of the sintered specimen. On the other hand, microhardness and elastic modulus were decreased with increasing of Ni content, while they increased significantly with the increase of sintering temperature. The electrical resistivity was decreased with increasing Ni content and sintering temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号