首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
To study the settlement and dynamic response characteristics of shallow square footings on geogrid-reinforced sand under cyclic loading, 7 sets of large scale laboratory tests are performed on a 0.5?m wide square footing resting on unreinforced and geogrid reinforced sand contained in a 3?m?×?1.6?m?×?2?m (length?×?width?×?height) steel tank. Different reinforcing schemes are considered in the tests: one layer of reinforcement at the depth of 0.3B, 0.6B and 0.9B, where B is the width of the footing; two and three layers of reinforcement at the depth and spacing both at 0.3B. In one of the two double layered reinforcing systems, the reinforcements are wrapped around at the ends. The footings are loaded to 160?kPa under static loading before applying cyclic loading. The cyclic loadings are applied at 40?kPa amplitude increments. Each loading stage lasts for 10?min at the frequency of 2?Hz, or until failure, whichever occurs first. The settlement of the footing, strain in the reinforcement and acceleration rate in the soil have been monitored during the tests. The results showed that the ultimate bearing capacity of the footings was affected by the number and layout of the reinforcements, and the increment of bearing capacity does not always increase with the number of reinforcement layers. The layout of the reinforcement layers affected the failure mechanisms of the footings. Including more layers of reinforcement could greatly reduce the dynamic response of the foundations under cyclic loading. In terms of bearing capacity improvement, including one layer of reinforcement at the depth of 0.6B was the optimum based on the test results. It is found that fracture of geogrid could occur under cyclic loading if the reinforcement is too shallow, i.e. for the cases with the first layer of reinforcement at 0.3B depth.  相似文献   

2.
This paper presents the results of laboratory model loading tests and numerical studies carried out on square footings supported on geosynthetic reinforced sand beds. The relative performance of different forms of geosynthetic reinforcement (i.e. geocell, planar layers and randomly distributed mesh elements) in foundation beds is compared; using same quantity of reinforcement in each test. A biaxial geogrid and a geonet are used for reinforcing the sand beds. Geonet is used in two forms of reinforcement, viz. planar layers and geocell, while the biaxial geogrid was used in three forms of reinforcement, viz. planar layers, geocell and randomly distributed mesh elements. Laboratory load tests on unreinforced and reinforced footings are simulated in a numerical model and the results are analyzed to understand the distribution of displacements and stresses below the footing better. Both the experimental and numerical studies demonstrated that the geocell is the most advantageous form of soil reinforcement technique of those investigated, provided there is no rupture of the material during loading. Geogrid used in the form of randomly distributed mesh elements is found to be inferior to the other two forms. Some significant observations on the difference in reinforcement mechanism for different forms of reinforcement are presented in this paper.  相似文献   

3.
Geogrids have been commonly used in reinforced soil structures to improve their performance. To investigate the geogrid reinforcement mechanisms, discrete element modelling of unreinforced and geogrid reinforced soil foundations and slopes was conducted under surface strip footing loads in this study. For unreinforced and reinforced soil foundations, the numerically obtained footing pressure-settlement relationships were validated by experimental results from the literature. In the numerical modelling of unreinforced and reinforced soil slopes, identical models and micro input parameters to those used in the numerical modelling of unreinforced and reinforced soil foundations were used. The geogrid reinforcing effects under strip footing loads were visualised by the qualitative contact force distributions in the soil structures, as well as the qualitative and quantitative tensile force distributions along the geogrids. In addition, the qualitative displacement distributions of soil particles in the soil structures and the quantitative vertical displacement distributions along soil layers/geogrids also indicated the geogrid reinforcing effects in such practical reinforced soil structures. The discrete element modelling results visualise and quantify the load transfer and spreading behavior in geogrid reinforced soil structures, and it provides researchers with an improved understanding of geogrid reinforcing effects at microscopic scale under strip footing loads.  相似文献   

4.
Plate anchors are frequently used to provide resistance against uplift forces. This paper describes the reinforcing effects of a geocell-reinforced soil layer on uplift behavior of anchor plates. The uplift tests were conducted in a test pit at near full-scale on anchor plates with widths between 150 and 300?mm with embedment depths of 1.5–3 times the anchor width for both unreinforced and geocell-reinforced backfill. A single geocell layer with pocket size 110?mm?×?110?mm and height 100?mm, fabricated from non-perforated and nonwoven geotextile, was used. The results show that the peak and residual uplift capacities of anchor models were highest when the geocell layer over the anchor was used, but with increasing anchor size and embedment depth, the benefit of the geocell reinforcement deceases. Peak loads between 130% and 155% of unreinforced conditions were observed when geocell reinforcement was present. Residual loading increased from 75% to 225% that of the unreinforced scenario. The reinforced anchor system could undergo larger upward displacements before peak loading occurred. These improvements may be attributed to the geocell reinforcement distributing stress to a wider area than the unreinforced case during uplift. The breakout factor increases with embedment depth and decreased with increasing anchor width for both unreinforced and reinforced conditions, the latter yielding larger breakout factors. Calibrated numerical modelling demonstrated favorable agreement with experimental observations, providing insight into detailed behavior of the system. For example, surface heave decreased by over 80% when geocell was present because of a much more efficient stress distribution imparted by the presence of the geocell layer.  相似文献   

5.
The response of soil beds reinforced with multi-layer geocell systems that support machine foundations is investigated by laboratory testing that incorporates vertical machine vibrations of a square concrete foundation (400 × 400 mm) resting on soil that is unreinforced or reinforced with single-, double- or triple geocell layers. The tests are performed under three different vibration moment levels and three static force levels using a mechanical oscillator and concrete blocks, respectively. The vibration responses are studied in terms of resonant amplitude, resonant frequency, shear modules and damping coefficient. The results reveal that the resonant amplitude significantly reduced in the presence of geocell reinforcement whereas the resonant frequency, shear modulus and damping coefficient increased. In the range of applied vibration load and frequency, and hence the induced amplitude, maximum improvement (i.e., the greatest reduction in vibration amplitude) was observed in the presence of the triple-layer geocell reinforcement. Since the rate of improvement decreases steadily with an increase in the number of geocell layers, thus, further geocell layers would deliver little further benefit. The optimum placement depth of the first geocell layer and vertical spacing of the geocell layers were found to be 0.1 and 0.05 of the foundation's width respectively.  相似文献   

6.
The suitability of geocell reinforcement in reducing rut depth, surface settlements and/or pavement cracks during service life of the pavements supported on expanded polystyrene (EPS) geofoam blocks is studied using a series of large-scale cyclic plate load tests plus a number of simplified numerical simulations. It was found that the improvement due to provision of geocell constantly increases as the load cycles increase. The rut depths at the pavement surface significantly decrease due to the increased lateral resistance provided by the geocell in the overlying soil layer, and this compensates the lower competency of the underlying EPS geofoam blocks. The efficiency of geocell reinforcement depends on the amplitude of applied pressure: increasing the amplitude of cyclic pressure increasingly exploits the benefits of the geocell reinforcement. During cyclic loading application, geocells can reduce settlement of the pavement surface by up to 41% compared to an unreinforced case – with even greater reduction as the load cycles increase. Employment of geocell reinforcement substantially decreases the rate of increase in the surface settlement during load repetitions. When very low density EPS geofoam (EPS 10) is used, even though accompanied with overlying reinforced soil of 600 mm thickness, the pavement is incapable of tolerating large cyclic pressures (e.g. 550 kPa). In comparison with the unreinforced case, the resilient modulus is increased by geocell reinforcement by 25%, 34% and 53% for overlying soil thicknesses of 600, 500 and 400 mm, respectively. The improvement due to geocell reinforcement was most pronounced when thinner soil layer was used. The verified three-dimensional numerical modelings assisted in further insight regarding the mechanisms involved. The improvement factors obtained in this study allow a designer to choose appropriate values for a geocell reinforced pavement foundation on EPS geofoam.  相似文献   

7.
The potential benefits of providing geocell reinforced sand mattress over clay subgrade with void have been investigated through a series of laboratory scale model tests. The parameters varied in the test programme include, thickness of unreinforced sand layer above clay bed, width and height of geocell mattress, relative density of the sand fill in the geocells, and influence of an additional layer of planar geogrid placed at the base of the geocell mattress. The test results indicate that substantial improvement in performance can be obtained with the provision of geocell mattress, of adequate size, over the clay subgrade with void. In order to have beneficial effect, the geocell mattress must spread beyond the void at least a distance equal to the diameter of the void. The influence of the void over the performance of the footing reduces for height of geocell mattress greater than 1.8 times the diameter of the footing. Better improvement in performance is obtained for geocells filled with dense soil.  相似文献   

8.
This paper presents the results of laboratory scale plate load tests on transparent soils reinforced with biaxial polypropylene geogrids. The influence of reinforcement length and number of reinforcement layers on the load-settlement response of the reinforced soil foundation was assessed by varying the reinforcement length and the number of geogrid layers, each spaced at 25% of footing width. The deformations of the reinforcement layers and soil under strip loading were examined with the aid of laser transmitters (to illuminate the geogrid reinforcement) and digital camera. A two-dimensional finite difference program was used to study the fracture of geogrid under strip loading considering the geometry of the model tests. The bearing capacity and stiffness of the reinforced soil foundation has increased with the increase in the reinforcement length and number of reinforcement layers, but the increase is more prominent by increasing number of reinforcement layers. The results from the physical and numerical modelling on reinforced soil foundation reveal that fracture of geogrid could initiate in the bottom layer of reinforcement and progress to subsequent upper layers. The displacement and stress contours along with the mobilized tensile force distribution obtained from the numerical simulations have complimented the observations made from the experiments.  相似文献   

9.
The results from laboratory model tests on strip footings supported by geocell reinforced sand beds with additional planar reinforcement are presented. The test results show that a layer of planar geogrid placed at the base of the geocell mattress further enhances the performance of the footing in terms of the load-carrying capacity and the stability against rotation. The beneficial effect of this planar reinforcement layer becomes negligible at large heights of geocell mattress.  相似文献   

10.
Buried pipes may transport substances that can be harmful to people and the environment. These structures may be subjected to damages caused by soil movements and external interference, such as surcharges and excavations. Different applications of geosynthetics have demonstrated that they can be used to protect buried pipes and to minimize the consequences of pipe burst. This paper discusses results of large scale laboratory tests on a flexible pipe buried in unreinforced and geosynthetic reinforced soils subjected to surface surcharges. The pipes were buried in a cohesionless soil and different types of reinforcements were tested, with a wide range of tensile stiffness values. The results obtained show that the arrangement of the reinforcement enveloping the pipe reduced significantly pipe displacements and deflections. The efficiency of the reinforcement depended on its type and physical and mechanical properties. The open geogrid tested showed less reinforcement efficiency due to the passage of soil particles through its aperture during the tests. A theoretical solution available for pipes in unreinforced soils was extended to the reinforced situation with good agreement between predictions and measurements and showed that the presence of the reinforcement is equivalent to the pipe being buried in a significantly stiffer unreinforced soil.  相似文献   

11.
This paper presents experimental investigations on the behavior of geogrid–reinforced sand featuring reinforcement anchorage which simulates the reinforcement connected to the wall facings in numerous in-situ situations. A series of large plane strain compression tests (the specimen 56 cm high × 56 cm wide × 45 cm long) was conducted. Standard Ottawa sand and 4 types of PET geogrids exhibiting 5% stiffness in the range of 750–1700 kN/m were used in this study. The specimens were tested by varying the relative density of sand, confining pressures, geogrid types, and reinforcement-anchorage conditions. Experimental results indicate that relative to unreinforced specimens, both anchored and non-anchored geogrid reinforcements can enhance the peak shear strength and suppress the volumetric dilation of reinforced soil. The studies on anchorage revealed that anchoring the reinforcement can restrain the lateral expansion of reinforced specimens, resulting in a substantial increase in shear strength and a reduction in volumetric dilation. The strength ratios of non-anchored specimens appeared to be insensitive to the reinforcement stiffness, whereas the strength ratios of the anchored specimens increased markedly with increases in soil density, reinforcement stiffness, and system deformation (i.e., axial stain). Geogrid anchorage contributed a large percentage of the total shear-strength improvement, nearly 3-times more than the contribution of the soil–geogrid interaction in non-anchored specimens. Lastly, an analytical model was developed based on the concept that additional confinement is induced by reinforcement anchorage, and the predicted shear strength of the anchored soil was verified based on the experimental data.  相似文献   

12.
Bearing capacity of square footings on geosynthetic reinforced sand   总被引:2,自引:0,他引:2  
The results from laboratory model tests and numerical simulations on square footings resting on sand are presented. Bearing capacity of footings on geosynthetic reinforced sand is evaluated and the effect of various reinforcement parameters like the type and tensile strength of geosynthetic material, amount of reinforcement, layout and configuration of geosynthetic layers below the footing on the bearing capacity improvement of the footings is studied through systematic model studies. A steel tank of size 900 × 900 × 600 mm is used for conducting model tests. Four types of grids, namely strong biaxial geogrid, weak biaxial geogrid, uniaxial geogrid and a geonet, each with different tensile strength, are used in the tests. Geosynthetic reinforcement is provided in the form of planar layers, varying the depth of reinforced zone below the footing, number of geosynthetic layers within the reinforced zone and the width of geosynthetic layers in different tests. Influence of all these parameters on the bearing capacity improvement of square footing and its settlement is studied by comparing with the test on unreinforced sand. Results show that the effective depth of reinforcement is twice the width of the footing and optimum spacing of geosynthetic layers is half the width of the footing. It is observed that the layout and configuration of reinforcement play a vital role in bearing capacity improvement rather than the tensile strength of the geosynthetic material. Experimental observations are supported by the findings from numerical analyses.  相似文献   

13.
This paper describes laboratory tests on footing constructed on unreinforced and geogrid-reinforced sand with circular a void subjected to a combination of static and repeated loads. The settlement of the footing was measured for up to 5000 cycles of loading and unloading. The variables examined in the testing program include the number of geogrid layers, the location of the void within the soil, the amplitude of cyclic load, and the number of load cycles. The results show that the footing performance due to cyclic loading is better for thicker geogrid reinforced sand with a void than for unreinforced sand with no void. In addition, a critical region was found to exist under the footing, under which a void results in increased footing settlement. Overall, the results indicate that the reinforced soil-footing systems with sufficient geogrid-reinforcement and sufficient void embedment depth behave much more stiffly and are thus capable of handling greater loads with lower settlement than those in unreinforced soil without a void. The undesirable effect of the void on the footing behavior can be eliminated. In addition, the results show that the values of footing settlement increase rapidly during the initial loading cycles; thereafter the rate of settlement is reduced significantly as the number of loading cycles increases.  相似文献   

14.
This paper describes load-carrying characteristics of a series of large-scale steel square footing tests performed on sand reinforced with two types of reinforcement methods. These are full geocell reinforcement (FGR) and geocell with an opening reinforcement (GOR). A thick steel square plate with 500?mm by 500?mm dimensions and 30?mm thickness was used as foundation. The parameters varying in the tests include the depth of geocell mattress (u), width of opening in geocell in the GOR type (w), relative density of sand (Dr) and number of geocell layers (N). The results revealed that the use of GOR and FGR methods enhances significantly the footing load carrying capacity, decreases the footing settlement and decreases the surface heave. It has been found that the use of GOR with an opening width of w/B?<?0.92, has the same improvement effect on the footing load-carrying response as the FGR has (B?=?footing width). Furthermore, with increasing the number of geocell layers from 1 to 2 in both GOR and FGR methods, the footing bearing pressure increases and footing settlement, surface heave and difference of performance between FGR and GOR mattress decrease.  相似文献   

15.
The paper presents the results of laboratory model tests on bearing capacity behaviour of a strip footing resting on the top of a geogrid reinforced flyash slope. A series of model footing tests covering a wide range of boundary conditions, including unreinforced cases were conducted by varying parameters such as location and depth of embedment of single geogrid layer, number of geogrid layers, location of footing relative to the slope crest, slope angles and width of footing. The results of the investigation indicate that both the pressure–settlement behaviour and the ultimate bearing capacity of footing resting on the top of a flyash slope can be enhanced by the presence of reinforcing layers. However the efficiency of flyash geogrid system increases with the increasing number of geogrid layers and edge distance of footing from the slope. Based on experimental results critical values of geogrid parameters for maximum reinforcing effects are established. Experimental results obtained from a series of model tests have been presented and discussed in the paper.  相似文献   

16.
One of the most useful geosynthetics in soil reinforcement is geogrid due to its high tensile strength, having a great influence on soil skeleton reinforcement and eventually, increasing bearing capacity of the foundation. In this research, a series of 36 repeated plate load tests have been carried out to investigate the scale effect on geogrid-reinforced soil, tending to further understanding of the behaviour of geogrid-reinforced soil system. Four different soil grains sizes, two different geogrid's aperture sizes (with roughly the same tensile strength) and three different loading plate sizes are the variables considered. During the tests, the applied loading and soil surface settlements were recorded to evaluate the systems' response. As it was expected, the reinforced soil exhibited higher bearing capacity than the unreinforced status, up to 635%. The results show that increasing loading plate size and soils' particle size fortify the response of foundation, especially in reinforced status, against the loading plate penetration. The results further focused on the important role of scale effect on the response of reinforced foundation. It was understood that the optimum nominal aperture size of geogrids should be about 4 times of medium grain size of soil. Also, it was found out that in order to acquisition of highest reinforcement benefits, the footing's width should be in the range 13–25 (20 in average) times of medium grain size of the backfill. Finally, to achieve the best results, it is recommended that the aperture size of geogrids should be selected roughly 0.2 times of footing width.  相似文献   

17.
加筋边坡在坡顶荷载作用下的极限承载能力   总被引:11,自引:0,他引:11       下载免费PDF全文
采用大型室内试验的方法,研究了两个土工格栅加固的土坡和一个未加固边坡在坡顶荷载作用下的变形与破坏规律。本文重点介绍大型模型的实验设计、测试技术和研究方法。实验结果表明,土工格栅加固边坡的承载能力为相同条件下未加固边坡的1.6-2倍。  相似文献   

18.
This paper presents the results from a laboratory modeling tests and numerical studies carried out on circular and square footings assuming the same plan area that rests on geosynthetic reinforced sand bed. The effects of the depth of the first and second layers of reinforcement, number of reinforcement layers on bearing capacity of the footings in central and eccentral loadings are investigated. The results indicated that in unreinforced condition, the ultimate bearing capacity is almost equal for both of the footings; but with reinforcing and increasing the number of reinforcement layers the ultimate bearing capacity of circular footing increased in a higher rate compared to square footing in both central and eccentrial loadings. The beneficial effect of a geosynthetic inclusion is largely dependent on the shape of footings. Also, by increasing the number of reinforcement layers, the tilt of circular footing decreased more than square footing. The SR (settlement reduction) of the reinforced condition shows that settlement at ultimate bearing capacity is heavily dependent on load eccentricity and is not significantly different from that for the unreinforced one. Also, close match between the experimental and numerical load-settlement curves and trend lines shown that the modeling approach utilized in this study can be reasonably adapted for reinforced soil applications.  相似文献   

19.
采用FALC3D对土工格栅加筋土地基载荷试验进行了进一步的数值模拟分析。根据计算结果,针对原型试验中难以量测的试坑变形及筋土界面摩阻力分布特征进行了讨论。利用数值模拟技术的优势,求解加筋地基的应变场,研究了加筋地基的破坏模式。结果表明:在竖向荷载作用下,试坑会发生侧向位移,通过加筋能有效减小试坑的侧向位移;筋土界面摩阻力的分布与筋土之间的相对位移直接相关;加筋地基的破坏机构因筋材的存在而发生改变,“深基础”效应以及“扩散层”效应都是加筋地基的增强机理,但地基的破坏模式随筋材的布置形式改变而有所不同。  相似文献   

20.
Storage tank foundations with frequent discharges and filling or road embankments under repeated traffic loads are examples of foundations subjected to the cyclic loading with the amplitude well below their allowable bearing capacity. The concern exists for the amount of uniform and non-uniform settlement of such structures. The soil under such foundations may be reinforced with geosynthetics to improve their engineering properties.This paper deals with the effects of using the new generation of reinforcement, grid-anchor, for the purpose of reducing the permanent settlement of these foundations under the influence of proportion of the ultimate load. Unloading-reloading field tests were performed to investigate the behavior of a square footing on the sand reinforced with this system under such loads. The effects of footing size and reinforcement types on the cyclic behavior of the reinforced sand were studied experimentally and numerically by the aid of computer code. The large-scale results show that by using the grid-anchors, the amount of permanent settlement decreases to 30%, as compared with the unreinforced condition. Furthermore, the number of loading cycles reaching the constant dimensionless settlement value decreases to 31%, compared with the unreinforced condition. Another goal of this paper is to present the equations for reinforced soil under cyclic loading to prevent such complicated calculation involved in deformation analysis. According to these equations, calculation of the permanent settlement and the number of load cycles to reach this amount for each foundation with a given size on the geomesh and grid-anchor reinforced sand, without further need to carry out the large-scale test, is supposed to perform easily.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号