首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The potential benefits of a thermal barrier coating on the heated side of diesel or turbine components are well documented, and this as well as other applications of ceramics in heat engines are being actively pursued. The ceramic coatings used in heat engines must be able to withstand severe thermal stress. The microstructure and properties of several sprayed coatings are described, including flame-sprayed alumina coatings, plasma-sprayed alumina coatings, and plasma-sprayed zirconia coatings. The results show that the modulus ( E ) of the coatings depends mainly on porosity and phase composition, and nonlinear stress-strain behavior is caused by the laminar grain structure of the coatings. The fracture strain of a coating is a major factor in the thermal shock resistance of that coating.  相似文献   

2.
《Ceramics International》2021,47(19):27420-27429
Firstly, the yttria-stabilized zirconia (YSZ) coating and gadolinium zirconate (GZO) coating with the quasi-columnar structure were manufactured by plasma spray physical vapor deposition. At the same time, a novel three-dimensional geometrical model was established that could satisfactorily reflect such quasi-columnar structural characteristics. Then, based on this model, the three-dimensional spatial distribution of pores and porosity of coatings and the thermal resistance behaviors of the quasi-columnar structured coating were analyzed. Later on, the thermodynamic model was established to estimate the thermal conductivity of the quasi-columnar structured coatings at different temperatures. Finally, a model for predicting the effective thermal conductivity of the GZO/YSZ double-layer coating with quasi-columnar structure was validated to account for the effects of the variable thickness ratios of GZO top layer to YSZ inner layer.  相似文献   

3.
《Ceramics International》2019,45(15):18951-18964
Alumina (Al2O3) based porous composites, reinforced with zirconia (ZrO2), 3 and 8 mol% Y2O3 stabilized ZrO2 (YSZ) and 4 wt% carbon nanotube (CNT) are processed via spark plasma sintering. The normalized linear shrinkage during sintering process of Al2O3-based composite shows minimum value (19.2–20.4%) for CNT reinforced composites at the temperature between 1650 °C and 575 °C. Further, the combined effect of porosity, phase-content and its crystallite size in sintered Al2O3-based porous composite have elicited lowest thermal conductivity of 1.2 Wm−1K−1 (Al2O3-8YSZ composite) at 900 °C. Despite high thermal conductivity of CNT (∼3000 Wm−1K−1), only a marginal thermal conductivity increase (∼1.4 times) to 7.3–13.4 Wm−1K−1 was observed for CNT reinforced composite along the longitudinal direction at 25 °C. The conventional models overestimated the thermal conductivity of CNT reinforced composites by up to ∼6.7 times, which include the crystallite size, porosity, and interfacial thermal resistance of Al2O3, YSZ and, CNT. But, incorporation of a new process induced CNT-alignment factor, the estimated thermal conductivity (of <6.6 Wm−1K−1) closely matched with the experimental values. Moreover, the high thermal conductivity (<76.1 Wm−1K−1) of the CNT reinforced porous composites along transverse direction confirms the process induced alignment of CNT in the spark plasma sintered composites.  相似文献   

4.
Epoxy composite coatings filled with fillers have been used extensively as anticorrosion materials. In this study, an alternating multilayer structure is designed to obtain multifunctional epoxy resin composite coating based on stepwise coating method via adding graphene and α‐alumina. Their mechanical properties, thermal conductivity, dielectric and anticorrosion properties are characterized. The toughness and the thermal conductivity clearly increase, while the dielectric properties decrease approximately to zero when the filler mass fraction increases from 0.00% to 0.15%. The whole corrosion process is controlled by electrochemical reaction, and the fillers effectively block the corrosive medium, thus improving the anticorrosion performance of the composite coating.  相似文献   

5.
The crystallographic texture and thermal conductivity of zirconia coatings deposited by electron beam evaporation on a variety of substrates have been measured. It was found that the thermal conductivity of coatings deposited at the same temperature was independent of whether they were deposited on polycrystalline alumina, single-crystal sapphire, single-crystal zirconia, or fused silica. The room-temperature thermal conductivity of the coatings deposited at 700°C was 0.32 W/(m·K), increasing to 1.36 W/(m·K) for coatings deposited at 1150°C. Similarly, the crystallographic texture was also independent of the substrate and had a (111) fiber texture at 700° and 900°C, switching to a (200) fiber texture by 1050°C. The exception was the coating deposited at 1150°C on (111) single-crystal zirconia which was epitaxial and exhibited a thermal conductivity of 2.46 W/(m·K). It is concluded that the properties of zirconia thermal barrier coatings are determined by the growth conditions rather than those associated with nucleation on the underlying substrate.  相似文献   

6.
以杜仲胶(EUG)和环氧树脂(E-51)为涂层基质、碳纳米管为导电填料制备了导电防腐涂料,考察了 EUG用量对复合涂层导电性和耐腐蚀性的影响.采用差示扫描量热仪和动态热机械分析仪研究了复合涂层的热性能,用四探针测试仪研究了导电性能,分别通过电化学阻抗谱及盐雾测试和附着力测试研究了耐腐蚀性和附着力.结果表明,当EUG用量...  相似文献   

7.
《Ceramics International》2017,43(14):11204-11217
The effective thermal conductivity of a composite coating depends on intrinsic thermal conductivity of the constituent phases, its characteristics (size, shape) and volume fraction of porosities. The present study concerns studying the effect of CoNiCrAlY and Al2O3 content on the coefficient of thermal expansion and thermal conductivity of the YSZ (YSZ-CoNiCrAlY and YSZ-Al2O3) based composite coatings developed by thermal spray deposition technique. The coefficient of thermal expansion and thermal conductivity of the composite coatings were measured by push rod dilatometer and laser flash techniques, respectively, from room temperature to 1000 °C. Variation in density, porosity, coefficient of thermal expansion, and thermal conductivity was observed in the composite coatings with the addition of different volume fraction of CoNiCrAlY and Al2O3 powders in YSZ-CoNiCrAlY and YSZ-Al2O3 composites, respectively. Comparison between the theoretical and experimental thermal conductivities showed a mismatch varying from 4% to 58% for YSZ-CoNiCrAlY composite coatings and from 58% to 80% for YSZ-Al2O3 composite coatings. Model based analyses were used to understand the mechanism of thermal conductivity reduction in the composite coatings. It was concluded that the morphology of porosities varied with composition.  相似文献   

8.
The aim is to develop an economical composite coating with high thermal stability. Ni–Co alloys are found to possess better thermal, physical and mechanical properties compared to Ni. Also, oxide particles as distributed phase can impart better thermal stability. Hence, particulates of composite Yttria stabilised zirconia, a commonly used high temperature material and alumina (YZA) were reinforced in various Ni–Co alloy matrices through electrodeposition. The influence of YZA on the microhardness, tribology and corrosion behaviour of Ni–Co alloys with Co contents of 0 wt.%, 17 wt.%, 38 wt.% and 85 wt.% was evaluated. Optical and Scanning Electron Microscopy (SEM) confirmed the presence of YZA particles and Energy Dispersive X-ray Analysis (EDX) revealed the composition. Tribology testing showed that composite containing 38 wt.% Co displayed better wear resistance. It was found from the immersion corrosion studies that Ni–17Co–YZA coating displayed improved corrosion resistance. Thermal stability studies showed that Ni–85Co–YZA coating retained its microhardness at temperatures of 600 °C. Thus, these coatings can be tailored for various applications by varying the cobalt content.  相似文献   

9.
《Ceramics International》2023,49(8):12348-12359
Current work pursues generating controlled bimodal microstructure by plasma spraying of micrometer-sized Al2O3 and nanostructured spray-dried agglomerate with reinforcement of 20 wt% of 8 mol % yttria stabilized zirconia (8YSZ) and 4 wt% carbon nanotube (CNT) as potential thermal barrier coating (TBC) on the Inconel 718 substrate. Composite coatings exhibit bimodal microstructure of: (i) fully melted and resolidified microstructured region (MR), and (ii) partially melted and solid state sintered nanostructured regions (NR). Reinforcement with 8YSZ has led to an increase in hardness from ∼12.8 GPa (for μ-Al2O3) to ∼13.9 GPa in MR of reinforced Al2O3-YSZ composite. Further, with the addition of CNT in Al2O3-8YSZ reinforced composite, hardness of MR has remained similar ∼13.9 GPa (8YSZ reinforced) and ∼13.5 GPa (8YSZ-CNT reinforced), which is attributed to acquiescent nature and non-metallurgical bonding of CNT with MR. Indentation fracture toughness increased from 3.4 MPam0.5 (for μ-Al2O3) to a maximum of 5.4 MPam0.5 (8YSZ- CNT reinforced) showing ∼57.7% improvement, which is due to crack termination at NR, retention of t-ZrO2 (∼3.3 vol%) crack bridging, and CNT pull-out toughening mechanisms. Modified fractal models affirmed that the introduction of bimodal microstructure (NR) i.e., nanometer-sized- Al2O3, nanostructured 8YSZ and CNTs in the μ-Al2O3 (MR) contributes ∼44.6% and ∼72% towards fracture toughness enhancement for A8Y and A8YC coatings. An enhanced contribution of nanostructured phases in toughening microstructured Al2O3 matrix (in plasma sprayed A8YC coating) is established via modified fractal model affirming crack deflection and termination for potential TBC applications.  相似文献   

10.
《Ceramics International》2016,42(14):15868-15875
In this research, the high temperature oxidation behavior, porosity, and microstructure of four abradable thermal barrier coatings (ATBCs) consisting of micro- and nanostructured YSZ, YSZ-10%LaPO4, and YSZ-20%LaPO4 coatings produced by atmospheric (APS) method were evaluated. Results show that the volume percentage of porosity in the coatings containing LaPO4 was higher than the monolithic YSZ sample. It was probably due to less thermal conductivity of LaPO4 phases. Furthermore, the results showed that the amount of the remaining porosity in the composite coatings was higher than the monolithic YSZ at 1000 °C for 120 h. After 120 h isothermal oxidation, the thickness of thermally growth oxide (TGO) layer in composite coatings was higher than that of YSZ coating due to higher porosity and sintering resistance of composite coatings. Finally, the isothermal oxidation resistance of conventional YSZ and nanostructured YSZ coating was investigated.  相似文献   

11.
Thermal insulation applications have long required materials with low thermal conductivity, and one example is yttria (Y2O3)-stabilized zirconia (ZrO2) (YSZ) as thermal barrier coatings used in gas turbine engines. Although porosity has been a route to the low thermal conductivity of YSZ coatings, nonporous and conformal coating of YSZ thin films with low thermal conductivity may find a great impact on various thermal insulation applications in nanostructured materials and nanoscale devices. Here, we report on measurements of the thermal conductivity of atomic layer deposition-grown, nonporous YSZ thin films of thickness down to 35 nm using time-domain thermoreflectance. We find that the measured thermal conductivities are 1.35–1.5 W m−1 K−1 and do not strongly vary with film thickness. Without any reduction in thermal conductivity associated with porosity, the conductivities we report approach the minimum, amorphous limit, 1.25 W m−1 K−1, predicted by the minimum thermal conductivity model.  相似文献   

12.
《Ceramics International》2022,48(14):19990-19999
Due to the high-input power compared to atmospheric plasma spraying (APS), plasma spray-physical vapor deposition (PS-PVD) can primarily achieve a splat-like deposition, allowing for the preparation of high-density environmental barrier coatings (EBCs). In this paper, dense Yb2SiO5-based coatings are prepared by PS-PVD at different substrate temperatures. It was found that the coating deposited at the substrate temperature of 700 °C contained a large amount of silicon-rich amorphous phase. When the substrate temperature increased to 1100 °C and a slow cooling process after deposition was involved, a coating with high crystallinity of ~77% and low porosity of less than ~2% was achieved. Phase evolution of the coatings was studied by a semi-in-situ high-temperature X-ray diffractometer. During the heating process, metastable phases X1-Yb2SiO5 and α-Yb2Si2O7 emerged and transformed into stable phases following high-temperature treatment. Furthermore, the effects of long-term thermal aging at 1300 °C on the microstructure, phase composition, thermal conductivity, and hardness of the coating prepared at the substrate temperature of 1100 °C were found to be limited.  相似文献   

13.
Yttria stabilized zirconia (YSZ) thermal barrier coatings (TBCs) are used to protect hot-components in aero-engines from hot gases. In this paper, the microstructure and thermo-physical and mechanical properties of plasma sprayed YSZ coatings under the condition of calcium-magnesium-alumina-silicate (CMAS) deposits were investigated. Si and Ca in the CMAS rapidly penetrated the coating at 1250 °C and accelerated sintering of the coating. At the interface between the CMAS and YSZ coating, the YSZ coating was partially dissolved in the CMAS, inducing the phase transformation from tetragonal phase to monoclinic phase. Also, the porosity of the coating was reduced from ∼25% to 5%. As a result, the thermal diffusivity at 1200 °C increased from 0.3 mm2/s to 0.7 mm2/s, suggesting a significant degradation in the thermal barrier effect. Also, the coating showed a ∼40% increase in the microhardness. The degradation mechanism of TBC induced by CMAS was discussed.  相似文献   

14.
《Ceramics International》2020,46(8):12275-12281
Alumina and zirconia ceramic particles exhibit high hardness and excellent wear resistance at high temperature, and hence are used as ceramic reinforcement phases in some plasma sprayed coatings. In this study, the interface evolution of a zirconia/alumina eutectic ceramic and the phase transition of zirconia in a plasma-sprayed coating were investigated. Scanning electron microscopy and transmission electron microscopy combined with focused-ion beam and energy dispersive X-ray were used to analyze the microstructure and composition of the ceramic interface. The results showed that the eutectic ceramic particles consisted of alumina (outer) and columnar zirconia (inner) before and after the plasma spraying process. The inner zirconia part showed the martensitic transformation of t-type zirconia to stripe-like m-type zirconia. After the plasma spraying, the interface between alumina and zirconia changed significantly, which formed a new oxide layer. The phase transition mechanism in the ceramic particle and oxide layer formation mechanism at the alumina/zirconia interface were investigated.  相似文献   

15.
The microstructures of plasma-sprayed yttria-stabilized zirconia (YSZ) coatings are complex, contributing to challenges in establishing microstructure–thermal conductivity relationships. Furthermore, the dynamic evolution of microstructure and properties during service offers a significant challenge in defining design strategies and extended coating performance. In this paper, the relationship between microstructure and thermal conductivity is investigated for three sets of plasma-sprayed YSZ coating systems prepared using different morphology powders, different particle size distributions, and controlled modification of particle states through plasma torch parameters. Both ambient and temperature-dependent thermal conductivity were conducted in the as-sprayed and thermally aged states. The results suggest that a range of thermal conductivities can be achieved from the coatings, offering potential for microstructural tailoring for desired performance. The results also demonstrate that different as-deposited microstructures display varying propensity for sintering and these attributes need to be considered in the design and manufacturing cycle. This expansive study of a range of coatings has also allowed synthesis of the results through thermal conductivity–porosity maps and has allowed elucidation of the contributing microstructural components for both the ambient and high-temperature thermal conductivity. Considering that the operating thermal transport mechanisms are different at these two temperature extremes, such mapping strategies are of value to both science and technology.  相似文献   

16.
Yttria stabilized zirconia/alumina (YSZ/Al2O3) composite coatings were prepared from electrophoretic deposition (EPD), followed by sintering. The constrained sintering of the coatings on metal substrates was characterized with microstructure examination using electron microscopy, mechanical properties examination using nanoindentation, and residual stress measurement using Cr3+ fluorescence spectroscopy. The microstructure close to the coating/substrate interface is more porous than that near the surface of the EPD coatings due to the deposition process and the constrained sintering of the coatings. The sintering of the YSZ/Al2O3 composite coating took up to 200 h at 1250 °C to achieve the highest density due to the constraint of the substrate. When the coating was sintered at 1000 °C after sintering at 1250 °C for less than 100 h, the compressive stress was generated due to thermal mismatch between the coating and metal substrate, leading to further densification at 1000 °C because of the ‘hot pressing’ effect. The relative densities estimated based on the residual stress measurements are close to the densities measured by the Archimedes method, which excludes an open porosity effect. The densities estimated from the hardness and the modulus measurements are lower than those from the residual stress measurement and the Archimedes method, because it takes account of the open porosity.  相似文献   

17.
Bioactive glasses and particles reinforced composites were used to coat alumina substrates, in order to combine the mechanical properties of the high-strength alumina with the bioactivity of the coatings. The coatings were either monolithic glass or glass-matrix/zirconia particle composite and were prepared by a low-cost firing method. A multilayer approach was applied to minimize crack propagation at the interface between the coating and the substrate. Functionally graded structures were developed to achieve a compliant material to withstand the stresses due to the expansion coefficient mismatch between the substrate and the coatings. The sequential coating of the alumina with glass-matrix/zirconia particle composite layers produced a structurally stable composite structure. A systematic study revealed that multiple layers were necessary to provide a gradual compliance of the thermal expansion coefficient. The glass-matrix/zirconia particles composites layers were also essential for the control of the Al3+ diffusion from the substrate through the glass. This is in accordance with the experimental results of previous works. Thus, the alumina content in the coating should be maintained as low as possible in order to preserve its bioactivity. The composite layers were further coated by a glass belonging to the system SiO2–CaO–P2O5–Na2O–MgO–F, known for its bioactivity. The experimental results were substantiated by optical and scanning electron microscopy (SEM) with compositional analysis (EDS) and by a mechanical characterization. The in vitro behavior of the coated samples was investigated by means of soaking in simulated body fluid (SBF) followed by SEM observation and XRD analysis.  相似文献   

18.
The aim of this research was to prepare waterborne polyurethane (WPU) coating blended with a series of poly(o-toluidine)-nano ZnO composites and study its anti-corrosion performance after its application over carbon steel. The synthesized composites were characterized by X-ray diffractometry (XRD), Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM). The corrosion resistance of coatings with and without nano ZnO were studied in 3.5% NaCl solution at a temperature of 25?°C, by electro-chemical techniques such as potentiodynamic polarization measurements and electrochemical impedance spectroscopy (EIS). It was observed that the composite coating containing 7% poly(o-toluidine)-nano ZnO composite had higher corrosion resistance than poly(o-toluidine) and 14% poly(o-toluidine)-nano ZnO composite. The presence of appropriate amount of ZnO significantly improved the corrosion resistance, due to the formation of passive layer on steel surface and the synergistic effects of poly(o-toluidine) along with a suitable amount of nano-ZnO reduced the porosity of the coating surface.  相似文献   

19.
The focus of this study is the amorphous phase formation in the alumina–yttria stabilized zirconia composite coatings during thermal spray deposition. The investigated processes include conventional and suspension plasma spraying. The focus of this paper is on suspension spraying, while making a comparison of the two processes. Through the study of the in-flight collected particles and coatings produced from the two processes, the comparison of fragmentation, melting and mixing phenomena became possible. Scanning electron microscopy, differential scanning calorimetry and X-ray diffractometric studies helped better understanding of the formation and the nature of amorphous and crystalline phases within the as-sprayed coatings. The results support the importance of melting and mixing phenomena during spraying on the amorphous phase formation, so that longer exposure at high temperature (lower in-flight particle velocity) results in higher amorphous contents due to more complete melting and mixing. The comparison of the atmospheric and suspension plasma spray methods presents several similarities in terms of melting and mixing behaviour and the resulting phases. The two methods are, however, different in fragmentation and the eventual crystallite sizes. The formation of crystalline supersaturated solid solutions of alumina and zirconia in SPS coatings is confirmed.  相似文献   

20.
Recently, a technique for improving the thermal efficiency of automotive engines has received considerable attention, namely the application of thermal insulation coatings to automotive engine components to reduce heat loss. This study presents thermal shock resistance and related microstructural changes and thermal properties of 8 wt% yttria-stabilized zirconia (8YSZ)/SiO2 multi-compositional thermal insulation coatings with suspensions of various particle sizes, when subjected to suspension plasma spray. After 10,000 cycles of thermal shock testing of the coatings, it was found that different degradation behavior related to the different microstructure of the coatings was influenced by the particle sizes of the suspension. The thermal conductivity of the coatings was significantly reduced by increasing the distribution of the unmelted particles within the coating.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号