首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Characteristics of piezoelectric actuator on Si membrane were investigated. Si membranes were fabricated as a function of size using bulk micromachining method. Bottom electrode Ag–Pd and piezoelectric thick films were fabricated using screen printing method, respectively. Piezoelectric thick films were sintered by rapid thermal annealing (RTA). Top electrodes Pt were deposited by DC sputtering system. We analyzed micro structure by scanning electron microscope (SEM) and investigated dynamic properties by MTI2000. Therefore, piezoelectric thick film on Si membrane had Pr of 15.7 μC cm−2. The maximum displacement of micro actuator had 0.05 μm. We find the combination of thick film printing and MEMS process to form a Si membrane micro actuator.  相似文献   

2.
The BaxSr1−xTiO3 (BST)/Pb1−xLaxTiO3 (PLT) composite thick films (20 μm) with 12 mol% amount of xPbO–(1 − x)B2O3 glass additives (x = 0.2, 0.35, 0.5, 0.65 and 0.8) have been prepared by screen-printing the paste onto the alumina substrates with silver bottom electrode. X-ray diffraction (XRD), scanning electron microscope (SEM) and an impedance analyzer and an electrometer were used to analyze the phase structures, morphologies and dielectric and pyroelectric properties of the composite thick films, respectively. The wetting and infiltration of the liquid phase on the particles results in the densification of the composite thick films sintered at 750 °C. Nice porous structure formed in the composite thick films with xPbO–(1 − x)B2O3 glass as the PbO content (x) is 0.5 ≥ x ≥ 0.35, while dense structure formed in these thick films as the PbO content (x) is 0.8 ≥ x ≥ 0.65. The volatilization of the PbO in PLT and the interdiffusion between the PLT and the glass lead to the reduction of the c-axis of the PLT phase. The operating temperature range of our composite thick films is 0–200 °C. At room temperature (20 °C), the BST/PLT composite thick films with 0.35PbO–0.65B2O3 glass additives provided low heat capacity and good pyroelectric figure-of-merit because of their porous structure. The pyroelectric coefficient and figure-of-merit FD are 364 μC/(m2 K) and 14.3 μPa−1/2, respectively. These good pyroelectric properties as well as being able to produce low-cost devices make this kind of thick films a promising candidate for high-performance pyroelectric applications.  相似文献   

3.
A Ti–46.5 at.% Al–4 at.% (Cr, Nb, Ta, B) intermetallic alloy with different microstructures (fine-grained primary annealed (PA) and coarse-grained fully lamellar (FL)) was examined by internal friction experiments. The influence of microstructure on the internal friction properties was studied by high-temperature (300–1270 K) mechanical loss experiments using a low frequency subresonance apparatus (0.01–10 Hz). The mechanical loss spectra show two phenomena: (i) a loss peak of Debye type at about 1000 K (1 Hz) which occurs only in samples with fully lamellar microstructure. The activation enthalpy, determined from the frequency shift, is 3.0 eV. The peak is assigned to thermally activated reversible local movement of dislocations that are part of the mismatch structure of semicoherent lamellar interfaces. (ii) A high-temperature damping background above 1000 K which is controlled by an activation enthalpy of 3.8–3.9 eV. The activation enthalpy agrees well with that of creep and strain rate cycling tests (3.5–3.7 eV) and is in the range of values reported for self-diffusion indicating that both properties (high-temperature background (HTB) and creep) are controlled by volume diffusion assisted climb of dislocations.  相似文献   

4.
Internal friction in copper thin films 0.2–1.5 μm thick on silicon substrates has been measured between 180 and 340 K as a function of strain amplitude. Analysis of the amplitude-dependent internal friction in the copper films shows the relation between the plastic strain of the order of 10−9 and the effective stress on dislocation motion. The stress–strain curves thus obtained for the copper films tend to shift to a higher stress with decreasing film thickness and also with decreasing temperature, both indicating a suppression of microplastic flow. It is concluded that the microflow stress at a constant level of the plastic strain varies inversely with the film thickness at all temperatures examined. The film thickness effect in the microplastic range can be explained on the basis of a dislocation-bowing model.  相似文献   

5.
The objective of this work was to investigate the performance of microarc oxide coatings of two different thicknesses (40 and 100 μm) on Al–Mg–Si alloy samples under plain fatigue and fretting fatigue loadings. Tensile residual stress present in the substrate of 40 μm thick coated samples induced early crack initiation in the substrate and so their plain fatigue lives were shorter than those of untreated specimens. Presence of more pores and tensile surface residual stress in 100 μm thick coated samples caused early crack initiation at the surface leading to their inferior plain fatigue lives compared with 40 μm thick coated samples. While the differences between the lives of coated and uncoated specimens were significant under plain fatigue loading, this was not the case under fretting fatigue loading. This may be attributed to relatively higher surface hardness of coated specimens. The performance of 40 μm thick coated samples was better than that of 100 μm thick coated specimens under both plain fatigue and fretting fatigue loadings.  相似文献   

6.
Low frequency internal friction was measured on three specimens of Ti–Ni–Cu ternary alloys, the Cu content varying from 10 to 20 at.%, while Ti content was fixed at 50 at.%. The internal friction spectrum consists mainly of two peaks, a sharper one associated with the B2–B19 transformation and the other one at around 250 K, which is much broader and higher than the former. The peak height of the latter is 0.2 for the specimen containing 20% Cu, which shows that this alloy can be an excellent high damping material. Transformation behavior was studied by electrical resistivity, thermopower and DSC measurements, and was compared with the result of internal friction measurements. Solution treatment at higher temperatures lowers the internal friction peak markedly. Scanning electron microscopy observation reveals that the behaviors of precipitates are different for different solution treatment temperature, suggesting that the precipitation behavior is crucial in the damping properties.  相似文献   

7.
The damping properties of Zn–22 wt.% Al alloys without and with Sc (0.55 wt.%) and Zr (0.26 wt.%) were investigated. The internal friction of the determined by the microstructure has been measured in terms of logarithmic decrement (δ) using a low frequency inverted torsion pendulum over the temperature region of 10–230 °C. An internal friction peak was separately observed at about 218 °C in the Zn–Al alloy and at about 195 °C in Zn–Al–Sc–Zr alloy. The shift of the δ peak was found to be directly attributed to the precipitation of Al3(Sc, Zr) phases from the alloy matrix. We consider that the both internal friction peak in the alloy originates from grain boundary (GB) relaxation, but the grain boundary relaxation can also be affected by Al–Sc–Zr intermetallics at the grain boundaries, which will impede grain boundary sliding. In addition, Al–Sc–Zr intermetallics at the grain boundaries can pin grain boundaries, and inhibit the growth of grains in aging, which increases the damping stability of Zn–22 wt.% Al alloy.  相似文献   

8.
Optimum thickness of charge stripper foils installed at the terminal of a tandem accelerator has been investigated from the view of (1) charge stripping effect, (2) transmission of ions through accelerator, (3) lifetime of foils for the irradiation of ions. For this purpose, measurements have been done for (a) transmission of H, Li, O, Br and Au ions, passing through 12 UD Pelletron tandem accelerator for carbon stripper foils of 1.8–19.5 μg/cm2 thickness, at terminal voltages of 5 and 10 MV, and (b) lifetime of 2–15 μg/cm2 thick Tanashi foils developed by Sugai by irradiating Au ions at the terminal voltage of 10 MV. The results obtained are as follows: (a) From the view of above items (1) and (2), the optimum thickness of foils is 10 μg/cm2 for ions of Z=1, several μg/cm2 for Z=8, and less than a few μg/cm2 for heavier ions. (b) From the view of item (3), the lifetime of Tanashi foils by means of new arc-discharge method is demonstrated to be much longer than that of commercial foils for foils thicker than about 5 μg/cm2 thick. This superiority rapidly decreases with decreasing foil thickness, and at around 2 μg/cm2, the lifetime of Tanashi foils is at the most 2.4 times longer than that of commercial foils.  相似文献   

9.
Energy dissipation by internal friction is a property of fundamental interest for probing the effects of scale on mechanical behavior in nanocrystalline metallic films and for guiding the use of these materials in the design of high-Q micro/nanomechanical resonators. This paper describes an experimental study to measure the effects of frequency, annealing and grain size on internal friction at room temperature in sputter-deposited nanocrystalline aluminum films with thicknesses ranging from 60 to 120 nm. Internal friction was measured using a single-crystal silicon microcantilever platform that calibrates dissipation against the fundamental limits of thermoelastic damping. Internal friction was a weak function of frequency, reducing only by a factor of two over three decades of frequency (70 Hz to 44 kHz). Annealing led to significant grain growth and the average grain size of 100 nm thick films increased from 90 to 390 nm after annealing for 1 h at 450?(°)C. This increase in grain size was accompanied by a decrease in internal friction from 0.05 to 0.02. Taken together, these results suggest that grain-boundary sliding, characterized by a spectrum of relaxation times, contributes to internal friction in these films.  相似文献   

10.
Low-frequency internal friction and elastic modulus were studied for manganese-rich Mn–Cu alloys in the temperature range of martensitic transformation (20–300 °C). It is shown that the some special features of the transformation peak and its temperature are caused by the degree of the spinodal decomposition. The phenomenological model connecting an-elastic effects with the stages of evolution of the structure during martensitic transformation in manganese-rich Mn–Cu alloys (tweed structure–“parquet” structure–classical twinning martensite) is presented.  相似文献   

11.
Longitudinal composite oscillators for measuring internal friction, piezoelectric modulus, and strain modulation effects are usually limited to a frequency range of 30 to 200 kHz. If the same crystals are vibrated in flexure, a longitudinal strain can be introduced with the resonance frequency below 3 kHz while at the same time keeping the inherent high Q of the composite system. This paper develops the theory for the strain amplitude and damping for the flexural composite oscillator made up of two quartz crystals plus specimen and, if appropriate, spacers. This high Q technique of vibrating in flexure has applications for strain modulation and damping experiments.  相似文献   

12.

We measured the dissipation resulting from internal friction in hcp solid 4He at temperatures between 0.8 K and 2.5 K. Solid 4He is contained inside an annular metal cell forming a part of a torsional oscillator. An oscillatory motion of the cell walls applies shear stress on the solid 4He. The resulting shear strain within the solid 4He generates dissipation because of the internal friction. The experimental sensitivity was high enough to detect dissipation caused by internal friction associated with elementary excitations of the solid. At temperatures below 1.6 K, internal friction is associated with diffusion of single point defects responsible for the climb of dislocations. At higher temperatures, the main mechanism of internal friction appears to be associated with phonon exchange between parts of the solid moving relative to each other under the applied shear stress. This particular dissipative mechanism was called “quantum phonon friction” [Popov in Phys. Rev. Lett. 83:1632–1635, 1999]. The physical mechanism associated with this type of friction involves an irreversible transfer of momentum from the phonons to the lattice via an Umklapp process. Our data are in a very good agreement with this model.

  相似文献   

13.
In order to study the microscopic mechanisms controlling the plastic deformation at high temperature of two γ-TiAl alloys with nominal compositions: Ti–46.5Al–4(Cr, Nb, Ta, B) and Ti–45Al–(5–10)Nb (in at.%), internal friction (IF) measurements have been performed. A subresonant torsion pendulum has been used working in two different modes; changing the temperature between 300 and 1200 K at a constant frequency, and varying the frequency between 0.001 and 10 Hz at a fixed temperature. The resulting mechanical spectra show an anelastic relaxation peak at about 1060 K at 1 Hz in one of the alloys and a high-temperature background in both of them. Activation parameters of the loss peak have been calculated and an activation enthalpy of about 3.8 eV is obtained. The characteristics and a possible responsible mechanism for this relaxation peak are discussed.  相似文献   

14.
A356 Al–fly ash particle composites were fabricated using stir-cast technique and hot extrusion. Composites containing 6 and 12 vol.% fly ash particles were processed. Narrow size range (53–106 μm) and wide size range (0.5–400 μm) fly ash particles were used. Hardness, tensile strength, compressive strength and damping characteristics of the unreinforced alloy and composites have been measured. Bulk hardness, matrix microhardness, 0.2% proof stress of A356 Al–fly ash composites are higher compared to that of the unreinforced alloy. Additions of fly ash lead to increase in hardness, elastic modulus and 0.2% proof stress. Composites reinforced with narrow size range fly ash particle exhibit superior mechanical properties compared to composites with wide size range particles. A356 Al–fly ash MMCs were found to exhibit improved damping capacity when compared to unreinforced alloy at ambient temperature.  相似文献   

15.
Samples of calcium hexaluminate (CA6) were studied by four-point bending creep tests and mechanical spectroscopy at temperatures between 1300 and 1600 K. By using the temperature-compensated time concept, proposed by Dorn (1954, 1956), activation enthalpies of the order of 620 kJ/mol were deduced from both the isothermal creep and the internal friction measurements. A generic curve, “ master curve”, is obtained by a superposition of the isothermal mechanical loss spectrum along the temperature-compensated frequency axis. The master curve is composed of two components: a high-frequency part (peak) and a low-frequency part (exponential background). Both the peak and the background decrease after performing torsional creep. Additionally, the peak shifts towards higher frequency after annealing. The high temperature mechanical loss behavior of CA6 is discussed in terms of a dislocation model invoking anelastic and viscoplastic relaxation phenomena.  相似文献   

16.
The residual stress of multilayers in piezoelectric microelectromechanical systems structures influences their electromechanical properties and performance. This paper describes the development of residual stress in 1.6 μm Pb(Zr0.52,Ti0.48)O3 (PZT)/0.3 μm ZrO2/0.5 μm SiO2 stacks for microactuator applications. The residual stresses were characterized by wafer curvature or load-deflection measurements. PZT and zirconia films were deposited on 4-in. (100) silicon wafers with 0.5 μm thick thermally grown SiO2 by sol–gel processes. After the final film deposition, the obtained residual stress of PZT, ZrO2, and SiO2 were 100–150, 230–270, and − 147 MPa, respectively. The average stress in the stack was  80 MPa. These residual stresses are explained in terms of the thermal expansion mismatch between the layers and the substrate. Load-deflection measurements were conducted to evaluate localized residual stresses using released circular diaphragms. The load-deflection results were consistent with the average stress value from the wafer curvature measurements. It was found that more reasonable estimates of the stack stresses could be obtained when mid-point vertical deflection data below 6 μm were used, for diaphragms 0.8–1.375 mm in diameter.  相似文献   

17.
The neutral atom density of a low-duty pulsed Penning ionized-gauge ion source (PIGIS) is sharply pulsed, according to the pulsed ion current into the cathode, which should act as a periodic ion pump in the plasma column of PIGIS. A high yield of multiply charged ions (Ar8+, 250–300 eμA; Ar7+, 1000 eμA) can thus be obtained under a reasonably low gas pressure during a short time (of the order of millisecond), which is sufficiently long for injection (160 μs) into the heavy-ion medical synchrotron (HIMAC) at NIRS.  相似文献   

18.
The internal friction of deformed molybdenum single crystals with two different orientations has been measured in the 300–1300 K temperature range. After annealing to 950 K, a relaxation peak is seen in the 880–840 K range, with a hysteresis between the warming and cooling runs. For higher annealing temperatures, the peak position change to 970 K for the 1 1 0 and 1040 K for the 1 4 9 sample. The influence of a bias stress on the sample relaxation was studied. Possible mechanisms for this relaxation have been considered, and an interaction of dislocations with vacancy type point defects has been proposed.  相似文献   

19.
Owing to a pick-up coil's flat design, relatively low MHz-range operation frequency, and six orders relative resolution a flat coil-based tunnel diode oscillator has advantages, compared to all other methods. They become crucial in studies with thin high-Tc superconductivity (HTSC) materials (with small signals), especially at the start of the Cooper pairs’ formation. Due to this the superconductivity precursor ‘paramagnetic’ effect was detected recently in YBaCuO films at N/S transition. It precedes Meissner ejection and specifies details of the shape of the transition curve. We discuss the influence of the currents on this effect, and the relationship between the quality of the material and the shape of the effect. A new imaging device has also been created based on this test method (using a focused He–Ne laser beam as a probing signal), capable of imaging the properties of HTSC films with 3 μm spatial resolution. The method is based on detection of the inductance and Q-factor value changes of a single-layer flat coil, placed at the face of the sample. This leads to frequency and/or amplitude changes of the stable oscillator. The test device enabled 2D-mapping of the grain structure of a bridge-shaped YBaCuO film. Basically, the method is capable of imaging 2D-current distribution in thin HTS with sub-μm spatial-resolution, using non-bolometric response. However, the achieved resolution 3 μm of a bolometric nature (in a given device with 3.5 mm-size coil) by no means is limited by the abilities of the method, but mainly, it depends on how narrowly it is possible to focus the probing beam, while the own resolution of a present flat coil-based technique is better than 0.1 μm, and can be improved essentially by reducing the coil size.  相似文献   

20.
A.F. Qasrawi   《Optical Materials》2007,29(12):1751-1755
InSe thin films are obtained by evaporating InSe crystal onto ultrasonically cleaned glass substrates under pressure of 10−5 Torr. The structural and compositional analysis revealed that these films are of amorphous nature and are atomically composed of 51% In and 49% Se. The reflectance and transmittance of the films are measured at various temperatures (300–450 K) in the incident photon energy range of 1.1–2.1 eV. The direct allowed transitions band gap – calculated at various temperatures – show a linear dependence on temperature. The absolute zero value band gap and the rate of change of the band gap with temperature are found to be (1.62 ± 0.01) eV and −(4.27 ± 0.02) × 10−4 eV/K, respectively. The room temperature refractive index is estimated from the transmittance spectrum. The later analysis allowed the identification of the static refractive index, static dielectric constant, oscillator strength and oscillator energy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号