首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Although several studies have investigated gender differences in the substrate and endocrine responses during and following endurance exercise, few have studied sex differences during a more prolonged recovery period post endurance exercise. The purpose of this study was to compare and characterize the endocrine and substrate profiles of trained male and female adult runners during the three-and-a-half hour recovery period from an endurance run.

Methods

After consuming a euenergetic diet (1.8 g·kg-1·d-1 protein, 26% fat, 58% carbohydrates, 42.8 ± 1.2 kcal/kg body weight) for 8 days, blood was collected from trained male (n = 6, 21 yrs, 70 kg, 180 cm, 9% body fat, VO2peak 78.0 ± 3.4 mL·kg FFM-1·min-1) and female (n = 6, 23 y, 66 kg, 170 cm, 29% body fat, VO2peak 71.6 ± 4.5 mL·kg FFM-1·min-1) endurance runners at rest and during recovery from a 75 min run at 70% VO2peak. Circulating levels of glucose, lactate, free fatty acids (FFAs), insulin, cortisol, growth hormone (GH), and free insulin-like growth factor I (IGF-I) were measured.

Results

During the recovery period, females experienced increases in glucose, lactate and insulin while no changes were noted in men (P < 0.05). Males experienced increases in GH and decreases in IGF-I levels respectively (P < 0.05) while no changes were observed in females. FFA levels increased during recovery from endurance exercise, but changes were not different between genders.

Conclusion

These data further document gender differences in substrate and endocrine changes during a prolonged recovery period following endurance exercise. Future studies are needed to evaluate the effect of differing diets and nutritional supplements on these gender-specific post-exercise substrate and endocrine differences.  相似文献   

2.

Background

To determine the impact of AA supplementation during resistance training on body composition, training adaptations, and markers of muscle hypertrophy in resistance-trained males.

Methods

In a randomized and double blind manner, 31 resistance-trained male subjects (22.1 ± 5.0 years, 180 ± 0.1 cm, 86.1 ± 13.0 kg, 18.1 ± 6.4% body fat) ingested either a placebo (PLA: 1 g·day-1 corn oil, n = 16) or AA (AA: 1 g·day-1 AA, n = 15) while participating in a standardized 4 day·week-1 resistance training regimen. Fasting blood samples, body composition, bench press one-repetition maximum (1RM), leg press 1RM and Wingate anaerobic capacity sprint tests were completed after 0, 25, and 50 days of supplementation. Percutaneous muscle biopsies were taken from the vastus lateralis on days 0 and 50.

Results

Wingate relative peak power was significantly greater after 50 days of supplementation while the inflammatory cytokine IL-6 was significantly lower after 25 days of supplementation in the AA group. PGE2 levels tended to be greater in the AA group. However, no statistically significant differences were observed between groups in body composition, strength, anabolic and catabolic hormones, or markers of muscle hypertrophy (i.e. total protein content or MHC type I, IIa, and IIx protein content) and other intramuscular markers (i.e. FP and EP3 receptor density or MHC type I, IIa, and IIx mRNA expression).

Conclusion

AA supplementation during resistance-training may enhance anaerobic capacity and lessen the inflammatory response to training. However, AA supplementation did not promote statistically greater gains in strength, muscle mass, or influence markers of muscle hypertrophy.  相似文献   

3.

Background

Although caffeine supplementation improves performance, the ergogenic effect is variable. The cause(s) of this variability are unknown. A (C/A) single nucleotide polymorphism at intron 1 of the cytochrome P450 (CYP1A2) gene influences caffeine metabolism and clinical outcomes from caffeine ingestion. The purpose of this study was to determine if this polymorphism influences the ergogenic effect of caffeine supplementation.

Methods

Thirty-five trained male cyclists (age = 25.0 ± 7.3 yrs, height = 178.2 ± 8.8 cm, weight = 74.3 ± 8.8 kg, VO2max = 59.35 ± 9.72 ml·kg-1·min-1) participated in two computer-simulated 40-kilometer time trials on a cycle ergometer. Each test was performed one hour following ingestion of 6 mg·kg-1 of anhydrous caffeine or a placebo administered in double-blind fashion. DNA was obtained from whole blood samples and genotyped using restriction fragment length polymorphism-polymerase chain reaction. Participants were classified as AA homozygotes (N = 16) or C allele carriers (N = 19). The effects of treatment (caffeine, placebo) and the treatment × genotype interaction were assessed using Repeated Measures Analysis of Variance.

Results

Caffeine supplementation reduced 40 kilometer time by a greater (p < 0.05) magnitude in AA homozygotes (4.9%; caffeine = 72.4 ± 4.2 min, placebo = 76.1 ± 5.8 min) as compared to C allele carriers (1.8%; caffeine = 70.9 ± 4.3 min, placebo = 72.2 ± 4.2 min).

Conclusions

Results suggest that individuals homozygous for the A allele of this polymorphism may have a larger ergogenic effect following caffeine ingestion.  相似文献   

4.

Background

The purpose of the present study was to examine the acute effects of a thermogenic nutritional supplement containing caffeine, capsaicin, bioperine, and niacin on muscular strength and endurance performance.

Methods

Twenty recreationally-active men (mean ± SD age = 21.5 ± 1.4 years; stature = 178.2 ± 6.3 cm; mass = 76.5 ± 9.9 kg; VO2 PEAK = 3.05 ± 0.59 L/min-1) volunteered to participate in this randomized, double-blinded, placebo-controlled, cross-over study. All testing took place over a three-week period, with each of the 3 laboratory visits separated by 7 days (± 2 hours). During the initial visit, a graded exercise test was performed on a Lode Corival cycle ergometer (Lode, Groningen, Netherlands) until exhaustion (increase of 25 W every 2 min) to determine the maximum power output (W) at the VO2 PEAK (Parvo Medics TrueOne® 2400 Metabolic Measurement System, Sandy, Utah). In addition, one-repetition maximum (1-RM) strength was assessed using the bench press (BP) and leg press (LP) exercises. During visits 2 and 3, the subjects were asked to consume a capsule containing either the active supplement (200 mg caffeine, 33.34 mg capsaicin, 5 mg bioperine, and 20 mg niacin) or the placebo (175 mg of calcium carbonate, 160 mg of microcrystalline cellulose, 5 mg of stearic acid, and 5 mg of magnesium stearate in an identical capsule) 30 min prior to the testing. Testing included a time-to-exhaustion (TTE) ride on a cycle ergometer at 80% of the previously-determined power output at VO2 PEAK followed by 1-RM LP and BP tests.

Results

There were no differences (p > 0.05) between the active and placebo trials for BP, LP, or TTE. However, for the BP and LP scores, the baseline values (visit 1) were less than the values recorded during visits 2 and 3 (p ≤ 0.05).

Conclusion

Our findings indicated that the active supplement containing caffeine, capsaicin, bioperine, and niacin did not alter muscular strength or cycling endurance when compared to a placebo trial. The lack of increases in BP and LP strength and cycle ergometry endurance elicited by this supplement may have been related to the relatively small dose of caffeine, the high intensity of exercise, the untrained status of the participants, and/or the potential for caffeine and capsaicin to increase carbohydrate oxidation.  相似文献   

5.

Background

We examined the effect of four weeks of ??-alanine supplementation on isometric endurance of the knee extensors at 45% maximal voluntary isometric contraction (MVIC).

Methods

Thirteen males (age 23?±?6 y; height 1.80?±?0.05?m; body mass 81.0?±?10.5?kg), matched for pre-supplementation isometric endurance, were allocated to either a placebo (n?=?6) or ??-alanine (n?=?7; 6.4?g·d-1 over 4?weeks) supplementation group. Participants completed an isometric knee extension test (IKET) to fatigue, at an intensity of 45% MVIC, before and after supplementation. In addition, two habituation tests were completed in the week prior to the pre-supplementation test and a further practice test was completed in the week prior to the post-supplementation test. MVIC force, IKET hold-time, and impulse generated were recorded.

Results

IKET hold-time increased by 9.7?±?9.4?s (13.2%) and impulse by 3.7?±?1.3 kN·s-1 (13.9%) following ??-alanine supplementation. These changes were significantly greater than those in the placebo group (IKET: t (11)?=?2.9, p ??0.05; impulse: t (11)?=?3.1, p????0.05). There were no significant changes in MVIC force in either group.

Conclusion

Four weeks of ??-alanine supplementation at 6.4?g·d-1 improved endurance capacity of the knee extensors at 45% MVIC, which most likely results from improved pH regulation within the muscle cell as a result of elevated muscle carnosine levels.  相似文献   

6.

Background

Dietary creatine has been largely used as an ergogenic aid to improve strength and athletic performance, especially in short-term and high energy-demanding anaerobic exercise. Recent findings have also suggested a possible antioxidant role for creatine in muscle tissues during exercise. Here we evaluate the effects of a 1-week regimen of 20?g/day creatine supplementation on the plasma antioxidant capacity, free and heme iron content, and uric acid and lipid peroxidation levels of young subjects (23.1?±?5.8?years old) immediately before and 5 and 60?min after the exhaustive Wingate test.

Results

Maximum anaerobic power was improved by acute creatine supplementation (10.5?%), but it was accompanied by a 2.4-fold increase in pro-oxidant free iron ions in the plasma. However, potential iron-driven oxidative insult was adequately counterbalanced by proportional increases in antioxidant ferric-reducing activity in plasma (FRAP), leading to unaltered lipid peroxidation levels. Interestingly, the FRAP index, found to be highly dependent on uric acid levels in the placebo group, also had an additional contribution from other circulating metabolites in creatine-fed subjects.

Conclusions

Our data suggest that acute creatine supplementation improved the anaerobic performance of athletes and limited short-term oxidative insults, since creatine-induced iron overload was efficiently circumvented by acquired FRAP capacity attributed to: overproduction of uric acid in energy-depleted muscles (as an end-product of purine metabolism and a powerful iron chelating agent) and inherent antioxidant activity of creatine.  相似文献   

7.

Background

The present experiment examined the responses of peripheral modulators and indices of brain serotonin (5-HT) and dopamine (DA) function and their association with perception of effort during prolonged exercise in the heat after creatine (Cr) supplementation.

Methods

Twenty one endurance-trained males performed, in a double-blind fashion, two constant-load exercise tests to exhaustion at 63 ± 5% O 2 max in the heat (ambient temperature: 30.3 ± 0.5 °C, relative humidity: 70 ± 2%) before and after 7 days of Cr (20 g·d-1 Cr + 140 g·d-1 glucose polymer) or placebo (Plc) (160 g·d-1 glucose polymer) supplementation.

Results

3-way interaction has shown that Cr supplementation reduced rectal temperature, heart rate, ratings of perceived leg fatigue (P < 0.05), plasma free-tryptophan (Trp) (P < 0.01) and free-Trp:tyrosine ratio (P < 0.01) but did not influence the ratio of free-Trp:large neutral amino acids or contribute in improving endurance performance (Plc group, n = 10: 50.4 ± 8.4 min vs. 51.2 ± 8.0 min, P > 0.05; Cr group, n = 11: 47.0 ± 4.7 min vs. 49.7 ± 7.5 min, P > 0.05). However, after dividing the participants into "responders" and "non-responders" to Cr, based on their intramuscular Cr uptake, performance was higher in the "responders" relative to "non-responders" group (51.7 ± 7.4 min vs.47.3 ± 4.9 min, p < 0.05).

Conclusion

although Cr influenced key modulators of brain 5-HT and DA function and reduced various thermophysiological parameters which all may have contributed to the reduced effort perception during exercise in the heat, performance was improved only in the "responders" to Cr supplementation. The present results may also suggest the demanding of the pre-experimental identification of the participants into "responders" and "non-responders" to Cr supplementation before performing the main experimentation. Otherwise, the possibility of the type II error may be enhanced.  相似文献   

8.

Background

Exacerbated oxidative stress is thought to be a mediator of arterial hypertension. It has been postulated that creatine (Cr) could act as an antioxidant agent preventing increased oxidative stress. The aim of this study was to investigate the effects of nine weeks of Cr or placebo supplementation on oxidative stress and cardiovascular parameters in spontaneously hypertensive rats (SHR).

Findings

Lipid hydroperoxidation, one important oxidative stress marker, remained unchanged in the coronary artery (Cr: 12.6 ± 1.5 vs. Pl: 12.2 ± 1.7 nmol·mg-1; p = 0.87), heart (Cr: 11.5 ± 1.8 vs. Pl: 14.6 ± 1.1 nmol·mg-1; p = 0.15), plasma (Cr: 67.7 ± 9.1 vs. Pl: 56.0 ± 3.2 nmol·mg-1; p = 0.19), plantaris (Cr: 10.0 ± 0.8 vs. Pl: 9.0 ± 0.8 nmol·mg-1; p = 0.40), and EDL muscle (Cr: 14.9 ± 1.4 vs. Pl: 17.2 ± 1.5 nmol·mg-1; p = 0.30). Additionally, Cr supplementation affected neither arterial blood pressure nor heart structure in SHR (p > 0.05).

Conclusions

Using a well-known experimental model of systemic arterial hypertension, this study did not confirm the possible therapeutic effects of Cr supplementation on oxidative stress and cardiovascular dysfunction associated with arterial hypertension.  相似文献   

9.

Background

It has been shown that supplementation with creatine (Cr) and glycerol (Gly), when combined with glucose (Glu) necessary for the enhancement of Cr uptake by skeletal muscle, induces significant improvements in thermoregulatory and cardiovascular responses during exercise in the heat.

Purpose

To determine whether Cr/Gly-induced thermoregulatory and cardiovascular responses are maintained when the majority (~75%) of the Glu in the Cr/Gly supplement is replaced with the insulintropic agent alpha lipoic acid (Ala).

Methods

22 healthy endurance trained cyclists were randomly assigned to receive either 20?g/day (4?×?5?g/day) of Cr, 2?g .kg-1 BM per day (4?×?0.5?g .kg-1 BM per day) of Gly and 150?g/day (4?×?37.5?g/day) of Glu or 20?g/day (4?×?5?g/day) of Cr monohydrate, 2?g .kg-1 BM per day (4?×?0.5?g .kg-1 BM per day) of Gly (100?g/day (4?×?25?g/day) of Glu and 1000?mg/day (4?×?250?mg/day) of Ala for 7?days for 7?days. Exercise trials were conducted pre- and post-supplementation and involved 40?min of constant-load cycling exercise at 70% O2 max by a self-paced 16.1?km time trial at 30°C and 70% relative humidity.

Results

Median and range values of TBW increased significantly by 2.1 (1.3-3.3) L and 1.8 (0.2-4.6) L in Cr/Gly/Glu and Cr/Gly/Glu/Ala groups respectively (P?=?0.03) and of BM not significantly by 1.8 (0.2-3.0) kg and 1.2 (0.5-2.1) kg in Cr/Gly/Glu and in Cr/Gly/Glu/Ala, respectively (P?=?0.75). During constant load exercise, heart rate (HR) and core temperature (Tcore) were significantly lower post-supplementation: HR was reduced on average by 3.3?±?2.1 beats/min and by 4.8?±?3.3 beats/min (mean ± SD) and Tcore by 0.2?±?0.1 (mean ± SD) in the Cr/Gly/Glu and Cr/Gly/Glu/Ala, respectively The reduction in HR and Tcore was not significantly different between the supplementation groups.

Conclusions

In comparison to the established hyper hydrating Cr/Gly/Glu supplement, supplement containing Cr/Gly/Ala and decreased amount of Glu provides equal improvements in thermoregulatory and cardiovascular responses during exercise in the heat.  相似文献   

10.

Background

Ageing is associated with a significant reduction in skeletal muscle carnosine which has been linked with a reduction in the buffering capacity of muscle and in theory, may increase the rate of fatigue during exercise. Supplementing beta-alanine has been shown to significantly increase skeletal muscle carnosine. The purpose of this study, therefore, was to examine the effects of ninety days of beta-alanine supplementation on the physical working capacity at the fatigue threshold (PWCFT) in elderly men and women.

Methods

Using a double-blind placebo controlled design, twenty-six men (n = 9) and women (n = 17) (age ± SD = 72.8 ± 11.1 yrs) were randomly assigned to either beta-alanine (BA: 800 mg × 3 per day; n = 12; CarnoSyn?) or Placebo (PL; n = 14) group. Before (pre) and after (post) the supplementation period, participants performed a discontinuous cycle ergometry test to determine the PWCFT.

Results

Significant increases in PWCFT (28.6%) from pre- to post-supplementation were found for the BA treatment group (p < 0.05), but no change was observed with PL treatment. These findings suggest that ninety days of BA supplementation may increase physical working capacity by delaying the onset of neuromuscular fatigue in elderly men and women.

Conclusion

We suggest that BA supplementation, by improving intracellular pH control, improves muscle endurance in the elderly. This, we believe, could have importance in the prevention of falls, and the maintenance of health and independent living in elderly men and women.  相似文献   

11.

Background

To determine whether acute (single dose) and/or chronic (14-days) supplementation of CoQ10 will improve anaerobic and/or aerobic exercise performance by increasing plasma and muscle CoQ10 concentrations within trained and untrained individuals.

Methods

Twenty-two aerobically trained and nineteen untrained male and female subjects (26.1 ± 7.6 yrs, 172 ± 8.7 cm, 73.5 ± 17 kg, and 21.2 ± 7.0%) were randomized to ingest in a double-blind manner either 100 mg of a dextrose placebo (CON) or a fast-melt CoQ10 supplement (CoQ10) twice a day for 14-days. On the first day of supplementation, subjects donated fasting blood samples and a muscle biopsy. Subjects were then given 200 mg of the placebo or the CoQ10 supplement. Sixty minutes following supplement ingestion, subjects completed an isokinetic knee extension endurance test, a 30-second wingate anaerobic capacity test, and a maximal cardiopulmonary graded exercise test interspersed with 30-minutes of recovery. Additional blood samples were taken immediately following each exercise test and a second muscle biopsy sample was taken following the final exercise test. Subjects consumed twice daily (morning and night), 100 mg of either supplement for a period of 14-days, and then returned to the lab to complete the same battery of tests. Data was analyzed using repeated measures ANOVA with an alpha of 0.05.

Results

Plasma CoQ10 levels were significantly increased following 2 weeks of CoQ10 supplementation (p < 0.001); while a trend for higher muscle CoQ10 levels was observed after acute CoQ10 ingestion (p = 0.098). A trend for lower serum superoxide dismutase (SOD) was observed following acute supplementation with CoQ10 (p = 0.06), whereas serum malondialdehyde (MDA) tended to be significantly higher (p < 0.05). Following acute ingestion of CoQ10, plasma CoQ10 levels were significantly correlated to muscle CoQ10 levels; maximal oxygen consumption; and treadmill time to exhaustion. A trend for increased time to exhaustion was observed following 2 weeks of CoQ10 supplementation (p = 0.06).

Conclusion

Acute supplementation with CoQ10 resulted in higher muscle CoQ10 concentration, lower serum SOD oxidative stress, and higher MDA levels during and following exercise. Chronic CoQ10 supplementation increased plasma CoQ10 concentrations and tended to increase time to exhaustion. Results indicate that acute and chronic supplementation of CoQ10 may affect acute and/or chronic responses to various types of exercise.  相似文献   

12.

Background

The effect of moderate dehydration and consequent fluid replenishment on short-duration maximal treadmill performance was studied in eight healthy, fit (VO2max = 49.7 ± 8.7 mL kg-1 min-1) males aged 28 ± 7.5 yrs.

Methods

The study involved a within subject, blinded, crossover, placebo design. Initially, all subjects performed a baseline exercise test using an individualized treadmill protocol structured to induce exhaustion in 7 to 10 min. On each of the three subsequent testing days, the subjects exercised at 70-75% VO2max for 60 min at 29-33°C, resulting in a dehydration weight loss of 1.8-2.1% body weight. After 60 min of rest and recovery at 22 C, subjects performed the same treadmill test to voluntary exhaustion, which resulted in a small reduction in VO2max and a decline in treadmill performance by 3% relative to the baseline results. Following another 60 min rest and recovery, subjects ingested the same amount of fluid lost in the form of one of three lemon-flavored, randomly assigned commercial drinks, namely Crystal Light (placebo control), Gatorade® and Rehydrate Electrolyte Replacement Drink, and then repeated the treadmill test to voluntary exhaustion.

Results

VO2max returned to baseline levels with Rehydrate, while there was only a slight improvement with Gatorade and Crystal Light. There were no changes in heart rate or ventilation with all three different replacement drinks. Relative to the dehydrated state, a 6.5% decrease in treadmill performance time occurred with Crystal Light, while replenishment with Gatorade, which contains fructose, glucose, sodium and potassium, resulted in a 2.1% decrease. In contrast, treatment with Rehydrate, which comprises fructose, glucose polymer, calcium, magnesium, sodium, potassium, amino acids, thiols and vitamins, resulted in a 7.3% increase in treadmill time relative to that of the dehydrated state.

Conclusions

The results indicate that constituents other than water, simple transportable monosaccharides and sodium are important for maximal exercise performance and effective recovery associated with endurance exercise-induced dehydration.  相似文献   

13.

Purpose

To examine the effect of betaine supplementation on cycling sprint performance.

Methods

Sixteen recreationally active subjects (7 females and 9 males) completed three sprint tests, each consisting of four 12 sec efforts against a resistance equal to 5.5% of body weight; efforts were separated by 2.5 min of cycling at zero resistance. Test one established baseline; test two and three were preceded by seven days of daily consumption of 591 ml of a carbohydrate-electrolyte beverage as a placebo or a carbohydrate-electrolyte beverage containing 0.42% betaine (approximately 2.5 grams of betaine a day); half the beverage was consumed in the morning and the other half in the afternoon. We used a double blind random order cross-over design; there was a 3 wk washout between trials two and three. Average and maximum peak and mean power were analyzed with one-way repeated measures ANOVA and, where indicated, a Student Newman-Keuls.

Results

Compared to baseline, betaine ingestion increased average peak power (6.4%; p < 0.001), maximum peak power (5.7%; p < 0.001), average mean power (5.4%; p = 0.004), and maximum mean power (4.4%; p = 0.004) for all subjects combined. Compared to placebo, betaine ingestion significantly increased average peak power (3.4%; p = 0.026), maximum peak power max (3.8%; p = 0.007), average mean power (3.3%; p = 0.034), and maximum mean power (3.5%; p = 0.011) for all subjects combined. There were no differences between the placebo and baseline trials.

Conclusions

One week of betaine ingestion improved cycling sprint power in recreationally active males and females.  相似文献   

14.

Background

Both acute bouts of prior exercise (preconditioning) and antioxidant nutrients have been used in an attempt to attenuate muscle injury or oxidative stress in response to resistance exercise. However, most studies have focused on untrained participants rather than on athletes. The purpose of this work was to determine the independent and combined effects of antioxidant supplementation (vitamin C + mixed tocopherols/tocotrienols) and prior eccentric exercise in attenuating markers of skeletal muscle injury and oxidative stress in resistance trained men.

Methods

Thirty-six men were randomly assigned to: no prior exercise + placebo; no prior exercise + antioxidant; prior exercise + placebo; prior exercise + antioxidant. Markers of muscle/cell injury (muscle performance, muscle soreness, C-reactive protein, and creatine kinase activity), as well as oxidative stress (blood protein carbonyls and peroxides), were measured before and through 48 hours of exercise recovery.

Results

No group by time interactions were noted for any variable (P > 0.05). Time main effects were noted for creatine kinase activity, muscle soreness, maximal isometric force and peak velocity (P < 0.0001). Protein carbonyls and peroxides were relatively unaffected by exercise.

Conclusion

There appears to be no independent or combined effect of a prior bout of eccentric exercise or antioxidant supplementation as used here on markers of muscle injury in resistance trained men. Moreover, eccentric exercise as used in the present study results in minimal blood oxidative stress in resistance trained men. Hence, antioxidant supplementation for the purpose of minimizing blood oxidative stress in relation to eccentric exercise appears unnecessary in this population.  相似文献   

15.

Background

We investigated the ergogenic effects of betaine (B) supplementation on strength and power performance.

Methods

Twelve men (mean ± SD age, 21 ± 3 yr; mass, 79.1 ± 10.7 kg) with a minimum of 3 months resistance training completed two 14-day experimental trials separated by a 14-day washout period, in a balanced, randomized, double-blind, repeated measures, crossover design. Prior to and following 14 days of twice daily B or placebo (P) supplementation, subjects completed two consecutive days (D1 and D2) of a standardized high intensity strength/power resistance exercise challenge (REC). Performance included bench, squat, and jump tests.

Results

Following 14-days of B supplementation, D1 and D2 bench throw power (1779 ± 90 and 1788 ± 34 W, respectively) and isometric bench press force (2922 ± 297 and 2503 ± 28 N, respectively) were increased (p < 0.05) during REC compared to pre-supplementation values (1534 ± 30 and 1498 ± 29 W, respectively; 2345 ± 64 and 2423 ± 84 N, respectively) and corresponding P values (1374 ± 128 and 1523 ± 39 W; 2175 ± 92 and 2128 ± 56 N, respectively). Compared to pre-supplementation, vertical jump power and isometric squat force increased (p < 0.05) on D1 and D2 following B supplementation. However, there were no differences in jump squat power or the number of bench press or squat repetitions.

Conclusion

B supplementation increased power, force and maintenance of these measures in selected performance measures, and these were more apparent in the smaller upper-body muscle groups.  相似文献   

16.

Purpose

The purpose of this study was to determine the effects of supplementation with a water-soluble cinnamon extract (Cinnulin PF®) on body composition and features of the metabolic syndrome.

Methods

Twenty-two subjects with prediabetes and the metabolic syndrome (mean ± SD: age, BMI, systolic blood pressure [SBP], fasting blood glucose [FBG]: 46.0 ± 9.7 y; 33.2 ± 9.3 kg/m2; 133 ± 17 mm Hg; 114.3 ± 11.6 mg/dL) were randomly assigned to supplement their diet with either Cinnulin PF® (500 mg/d) or a placebo for 12-weeks. Main outcome measures were changes in FBG, SBP, and body composition measured after 12-weeks of supplementation. The primary statistical analyses consisted of two factor (group × time), repeated-measures ANOVA for between group differences over time. In all analyses, an intent-to-treat approach was used and significance was accepted at P < 0.05.

Results

Subjects in the Cinnulin PF® group had significant decreases in FBG (-8.4%: 116.3 ± 12.8 mg/dL [pre] to 106.5 ± 20.1 mg/dL [post], p < 0.01), SBP (-3.8%: 133 ± 14 mm Hg [pre] to 128 ± 18 mm Hg [post], p < 0.001), and increases in lean mass (+1.1%: 53.7 ± 11.8 kg [pre] to 54.3 ± 11.8 kg [post], p < 0.002) compared with the placebo group. Additionally, within-group analyses uncovered small, but statistically significant decreases in body fat (-0.7%: 37.9 ± 9.2% [pre] to 37.2 ± 8.9% [post], p < 0.02) in the Cinnulin PF® group. No significant changes in clinical blood chemistries were observed between groups over time.

Conclusion

These data support the efficacy of Cinnulin PF® supplementation on reducing FBG and SBP, and improving body composition in men and women with the metabolic syndrome and suggest that this naturally-occurring spice can reduce risk factors associated with diabetes and cardiovascular diseases.  相似文献   

17.

Background

The purpose of this study was to determine whether sedentary obese women with knee OA initiating an exercise and weight loss program may experience more beneficial changes in body composition, functional capacity, and/or markers of health following a higher protein diet compared to a higher carbohydrate diet with or without GCM supplementation.

Methods

Thirty sedentary women (54 ± 9 yrs, 163 ± 6 cm, 88.6 ± 13 kg, 46.1 ± 3% fat, 33.3 ± 5 kg/m2) with clinically diagnosed knee OA participated in a 14-week exercise and weight loss program. Participants followed an isoenergenic low fat higher carbohydrate (HC) or higher protein (HP) diet while participating in a supervised 30-minute circuit resistance-training program three times per week for 14-weeks. In a randomized and double blind manner, participants ingested supplements containing 1,500 mg/d of glucosamine (as d-glucosamine HCL), 1,200 mg/d of chondroitin sulfate (from chondroitin sulfate sodium), and 900 mg/d of methylsulfonylmethane or a placebo. At 0, 10, and 14-weeks, participants completed a battery of assessments. Data were analyzed by MANOVA with repeated measures.

Results

Participants in both groups experienced significant reductions in body mass (-2.4 ± 3%), fat mass (-6.0 ± 6%), and body fat (-3.5 ± 4%) with no significant changes in fat free mass or resting energy expenditure. Perception of knee pain (-49 ± 39%) and knee stiffness (-42 ± 37%) was decreased while maximal strength (12%), muscular endurance (20%), balance indices (7% to 20%), lipid levels (-8% to -12%), homeostasis model assessment for estimating insulin resistance (-17%), leptin (-30%), and measures of physical functioning (59%), vitality (120%), and social function (66%) were improved in both groups with no differences among groups. Functional aerobic capacity was increased to a greater degree for those in the HP and GCM groups while there were some trends suggesting that supplementation affected perceptions of knee pain (p < 0.08).

Conclusions

Circuit style resistance-training and weight loss improved functional capacity in women with knee OA. The type of diet and dietary supplementation of GCM provided marginal additive benefits.

Trial Registration

ClinicalTrials.gov: NCT01271218  相似文献   

18.

Background

To examine the effects of higher-protein diets on endogenous glucose metabolism in healthy, physically active adults, glucose turnover was assessed in five endurance-trained men (age 21.3 ± 0.3 y, VO2peak 70.6 ± 0.1 mL kg-1 min-1) who consumed dietary protein intakes spanning the current dietary reference intakes.

Findings

Using a randomized, crossover design, volunteers consumed 4 week eucaloric diets providing either a low (0.8 g kg-1 d-1; LP), moderate (1.8 g kg-1 d-1; MP), or high (3.6 g kg-1 d-1; HP) level of dietary protein. Glucose turnover (Ra, glucose rate of appearance; and Rd glucose rate of disappearance) was assessed under fasted, resting conditions using primed, constant infusions of [6,6-2H2] glucose. Glucose Ra and Rd (mg kg-1 min-1) were higher for MP (2.8 ± 0.1 and 2.7 ± 0.1) compared to HP (2.4 ± 0.1 and 2.3 ± 0.2, P < 0.05) and LP (2.3 ± 0.1 and 2.2 ± 0.1, P < 0.01) diets. Glucose levels (mmol/L) were not different (P > 0.05) between LP (4.6 ± 0.1), MP (4.8 ± 0.1), and HP (4.7 ± 0.1) diets.

Conclusions

Level of protein consumption influenced resting glucose turnover in endurance athletes in a state of energy balance with a higher rate of turnover noted for a protein intake of 1.8 g kg-1 d-1. Findings suggest that consumption of protein in excess of the recommended dietary allowance but within the current acceptable macronutrient distribution range may contribute to the regulation of blood glucose when carbohydrate intake is reduced by serving as a gluconeogenic substrate in endurance-trained men.  相似文献   

19.

Background

The effect on performance of protein ingestion during or after exercise is not clear. This has largely been attributed to the utilization of different scientific protocols and the neglection of accounting for factors such as differences in physical and chemical properties of protein supplements and differences in athletic performance level.

Methods

We hypothesized that ingestion of unprocessed whey protein (15.3 g·h-1) together with carbohydrate (60 g·h-1), would provide no ergogenic effect on 5-min mean-power performance following 120 min cycling at 50% of maximal aerobic power (2.8 ± 0.2 W·kg-1, corresponding to 60 ± 4% of VO2max), compared to CHO alone (60 g·h-1). Conversely, we hypothesized that ingestion of the hydrolyzed marine protein supplement NutriPeptin? (Np, 2.7 g·h-1), a processed protein supplement with potentially beneficial amino acid composition, together with a PROCHO beverage (12.4 g·h-1 and 60 g·h-1, respectively) would provide an ergogenic effect on mean-power performance. We also hypothesized that the magnitude of the ergogenic effect of NpPROCHO would be dependent on athletic performance. As for the latter analysis, performance level was defined according to a performance factor, calculated from individual pre values of Wmax, VO2max and 5-min mean-power performance, wherein the performance of each subject was ranked relative to the superior cyclist whos performance was set to one. Twelve trained male cyclists (VO2max = 65 ± 4 ml·kg-1·min-1) participated in a randomized double-blinded cross-over study.

Results and conclusions

Overall, no differences were found in 5-min mean-power performance between either of the beverages (CHO 5.4 ± 0.5 W·kg-1; PROCHO 5.3 ± 0.5 W·kg-1; NpPROCHO 5.4 ± 0.3 W·kg-1) (P = 0.29). A negative correlation was found between NpPROCHO mean-power performance and athletic performance level (using CHO-performance as reference; Pearson R = -0.74, P = 0.006). Moreover, ingestion of NpPROCHO resulted in improved 5-min mean-power performance relative to ingestion of CHO in the six lesser performing subjects compared to the six superior performing subjects (P < 0.05). This suggests that with the current protocol, NpPROCHO provided an ergogenic effect on 5-min mean-power performance in athletes with a lower performance level.  相似文献   

20.

Background

We compared Glycine Propionyl-L-Carnitine (GlycoCarn®) and three different pre-workout nutritional supplements on measures of skeletal muscle oxygen saturation (StO2), blood nitrate/nitrite (NOx), lactate (HLa), malondialdehyde (MDA), and exercise performance in men.

Methods

Using a randomized, double-blind, cross-over design, 19 resistance trained men performed tests of muscular power (bench press throws) and endurance (10 sets of bench press to muscular failure). A placebo, GlycoCarn®, or one of three dietary supplements (SUPP1, SUPP2, SUPP3) was consumed prior to exercise, with one week separating conditions. Blood was collected before receiving the condition and immediately after exercise. StO2 was measured during the endurance test using Near Infrared Spectroscopy. Heart rate (HR) and rating of perceived exertion (RPE) were determined at the end of each set.

Results

A condition effect was noted for StO2 at the start of exercise (p = 0.02), with GlycoCarn® higher than SUPP2. A condition effect was also noted for StO2 at the end of exercise (p = 0.003), with SUPP1 lower than all other conditions. No statistically significant interaction, condition, or time effects were noted for NOx or MDA (p > 0.05); however, MDA decreased 13.7% with GlycoCarn® and increased in all other conditions. Only a time effect was noted for HLa (p < 0.0001), with values increasing from pre- to post-exercise. No effects were noted for HR, RPE, or for any exercise performance variables (p > 0.05); however, GlycoCarn® resulted in a statistically insignificant greater total volume load compared to the placebo (3.3%), SUPP1 (4.2%), SUPP2 (2.5%), and SUPP3 (4.6%).

Conclusion

None of the products tested resulted in favorable changes in our chosen outcome measures, with the exception of GlycoCarn® in terms of higher StO2 at the start of exercise. GlycoCarn® resulted in a 13.7% decrease in MDA from pre- to post-exercise and yielded a non-significant but greater total volume load compared to all other conditions. These data indicate that 1) a single ingredient (GlycoCarn®) can provide similar practical benefit than finished products containing multiple ingredients, and 2) while we do not have data in relation to post-exercise recovery parameters, the tested products are ineffective in terms of increasing blood flow and improving acute upper body exercise performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号