首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Matrix-assisted laser desorption/ionization (tandem) mass spectrometry (MALDI MS) is widely used in protein chemistry and proteomics research for the identification and characterization of proteins isolated by polyacrylamide gel electrophoresis. In an effort to minimize sample handling and increase sample throughput, we have developed a novel in-gel digestion protocol where sample preparation is performed directly on a MALDI probe with prestructured sample support. The protocol consists of few sample-handling steps and has minimal consumption of reagents, making the protocol sensitive, timesaving, and cost-efficient. Performance of the on-probe sample preparation protocol was demonstrated by analysis of a set of rat liver proteins obtained from a fluorescently stained (Cy3 and SyproRuby) two-dimensional polyacrylamide gel. The success rate of protein identification by on-probe tryptic digestion and MALDI peptide mass mapping was 89%. The on-probe in-gel digestion procedure provided superior sensitivity and peptide mass mapping performance as compared to our standard in-gel digestion protocol. The on-probe digestion technique resulted in significantly improved amino acid sequence coverage of proteins, mainly due to efficient recovery and detection of large (>1.5 kDa) hydrophobic peptides. These observations indicate that numerous tryptic peptides are lost when using the standard in-gel digestion methods and sample preparation techniques for MALDI MS. This study also demonstrates that the on-probe digestion protocol combined with MALDI tandem mass spectrometry provides a robust platform for proteomics research, including protein identification and determination of posttranslational modifications.  相似文献   

2.
Monobromobimane (MBB) is a lipophilic reagent that selectively modifies free cysteine residues in proteins. Because of its lipophilic character, MBB is capable of labeling cysteine residues in membrane proteins under native conditions. Reaction of MBB with the sulfhydryl groups of free cysteines leads to formation of highly fluorescent derivatives. Here we describe a procedure for the detection and relative quantitation of MBB-labeled cysteines using fluorescence and mass spectrometric analyses, which allow determination of free cysteine content and unambiguous identification of MBB-modified cysteine residues. We have applied this approach to the analysis of the free and redox-sensitive cysteine residues of a large membrane protein, the sarcoplasmic reticulum Ca2+ release channel with a molecular mass of 2.2 million Da. Labeling was performed under physiologic conditions where the channel complex is in its native environment and is functionally active. The purified MBB-labeled channel complex was enzymatically digested, and the resulting peptides were separated by reversed-phase high-performance chromatography. MBB-labeled peptides were detected by fluorescence and identified by matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. Under MALDI conditions, partial photolytic fragmentation of the MBB-peptide bound occurred, thus allowing convenient screening for the MBB-modified peptides in the MS spectrum by detection of the specific mass increment of 190.07 Da for MBB-modified cysteine residues. Modification of the peptides was further confirmed by tandem mass spectrometric analysis, utilizing sequencing information and the presence of the specific immonium ion for the MBB-modified cysteine residues at m/z 266.6. Quantitative information was obtained by comparison of both fluorescence and MS signal intensities of MBB-modified peptides. Combination of fluorescence with MS detection and analysis of MBB-labeled peptides supported by a customized software program provides a convenient method for identifying and quantifying redox-sensitive cysteines in membrane proteins of native biological systems. Identification of one redox-sensitive cysteine (2327) in the native membrane-bound sarcoplasmic reticulum Ca2+ release channel is described.  相似文献   

3.
The analysis of proteins under denaturing conditions is routinely performed with SDS-polyacrylamide gel electrophoresis. The automated capabilities of CE, use of nongel sieving matrixes, and on-line optical detection by either ultraviolet (UV) absorption or laser-induced fluorescence (LF) promise to revolutionize this method. While direct on-line detection of proteins is possible as a result of their intrinsic ability to absorb light in the UV part of the spectrum (detection sensitivity comparable to Coomassie Blue staining of gels), LIF provides more powerful detection but requires pre- or postcolumn fluorescence labeling of the proteins. The development of a protocol analogous to that used for double-stranded DNA analysis, where fluorescent intercalating dyes are simply included in the separation medium, would simplify size-based protein analysis immensely. This would avoid the complications associated with covalent modification of the proteins but still exploit the sensitivity of LIF detection. We demonstrate that this is possible with CE and microchip detection by incorporating, into the run buffer, a fluorescent dye that interacts hydrophobically with protein-SDS complexes. Key to this is a dye that fluoresces significantly when bound to protein-SDS complexes but not when bound to SDS micelles. Comparison of electropherograms from CE-based denaturing protein analysis with UV and LIF detection indicates that the presence of the fluor does not alter separation of the proteins. Moreover, comparison with electropherograms generated from microchip electrophoresis with LIF detection shows that equivalent patterns can be obtained. Despite the unoptimized nature of this separation system, a dynamic labeling protocol that allows for LIF detection for proteins is attractive and has the potential to circumvent the tedious labeling steps typically required.  相似文献   

4.
Quantitative mass spectrometry using stable isotope-labeled tagging reagents such as isotope-coded affinity tags has emerged as a powerful tool for identification and relative quantitation of proteins in current proteomic studies. Here we describe an integrated approach using both automated two-dimensional liquid chromatography/ mass spectrometry (2D-LC/MS) and a novel class of chemically modified resins, termed acid-labile isotope-coded extractants (ALICE), for quantitative mass spectrometric analysis of protein mixtures. ALICE contains a thiol-reactive group that is used to capture all cysteine (Cys)-containing peptides from peptide mixtures, an acid-labile linker, and a nonbiological polymer. The acid-labile linker is synthesized in both heavy and light isotope-coded forms and therefore enables the direct relative quantitation of peptides/proteins through mass spectrometric analysis. To test the ALICE method for quantitative protein analysis, two model protein mixtures were fully reduced, alkylated, and digested in solution separately and then Cys-containing peptides covalently captured by either light or heavy ALICE. The reacted light and heavy ALICE were mixed and washed extensively under rigorous conditions and the Cys-containing peptides retrieved by mild acid-catalyzed elution. Finally, the eluted peptides were directly subjected to automated 2D-LC/MS for protein identification and LC/MS for accurate relative quantitation. Our initial study showed that quantitation of protein mixtures using ALICE was accurate. In addition, isolation of Cys-containing peptides by the ALICE method was robust and specific and thus yielded very low background in mass spectrometric studies. Overall, the use of ALICE provides improved dynamic range and sensitivity for quantitative mass spectrometric analysis of peptide or protein mixtures.  相似文献   

5.
Wan QH  Le XC 《Analytical chemistry》2000,72(22):5583-5589
Protein-DNA interactions were studied on the basis of capillary electrophoretic separation of bound from free fluorescent probe followed by on-line detection with laser-induced fluorescence polarization. Changes in electrophoretic mobility and fluorescence anisotropy upon complex formation were monitored for the determination of binding affinity and stoichiometry. The method was applied to study the interactions of single-stranded DNA binding protein (SSB) with synthetic oligonucleotides and single-stranded DNA. Increases in fluorescence anisotropy and decreases in electrophoretic mobility upon their binding to SSB were observed for the fluorescently labeled 11-mer and 37-mer oligonucleotide probes. Fluorescence anisotropy and electrophoretic mobility were used to determine the binding constants of the SSB with the 11-mer (5 x 10(6) M(-1)) and the 37-mer (23 x 10(6) M(-1)). Alternatively, a fluorescently labeled SSB was used as a probe, and the formation of multiple protein-DNA complexes that differ in stoichiometry was observed. The results demonstrate the applicability of the method to study complex interactions between protein and DNA.  相似文献   

6.
Glycomic analysis is an increasingly important field in biological and biomedical research as glycosylation is one of the most important protein post-translational modifications. We have developed a new technique to detect carbohydrates using surface enhanced Raman spectroscopy (SERS) by designing and applying a Rhodamine B derivative as the SERS tag. Using a reductive amination reaction, the Rhodamine-based tag (RT) was successfully conjugated to three model carbohydrates (glucose, lactose, and glucuronic acid). SERS detection limits obtained with a 633 nm HeNe laser were ~1 nM in concentration for all the RT-carbohydrate conjugates and ~10 fmol in total sample consumption. The dynamic range of the SERS method is about 4 orders of magnitude, spanning from 1 nM to 5 μM. Ratiometric SERS quantification using isotope-substituted SERS internal references allows comparative quantifications of carbohydrates labeled with RT and deuterium/hydrogen substituted RT tags, respectively. In addition to enhancing the SERS detection of the tagged carbohydrates, the Rhodamine tagging facilitates fluorescence and mass spectrometric detection of carbohydrates. Current fluorescence sensitivity of RT-carbohydrates is ~3 nM in concentration while the mass spectrometry (MS) sensitivity is about 1 fmol, achieved with a linear ion trap electrospray ionization (ESI)-MS instrument. Potential applications that take advantage of the high SERS, fluorescence, and MS sensitivity of this SERS tagging strategy are discussed for practical glycomic analysis where carbohydrates may be quantified with a fluorescence and SERS technique and then identified with ESI-MS techniques.  相似文献   

7.
In protein interaction analysis, one promising method to identify the involved proteins and to characterize interacting sites at the same time is the mass spectrometric analysis of enzymatic hydrolysates of covalently cross-linked complexes. While protein identification can be accomplished by the methodology developed for proteome analysis, the unequivocal detection and characterization of cross-linked sites remained involved without selection criteria for linked peptides in addition to mass. To provide such criteria, we incorporated cross-links with a distinct isotope pattern into the microtubule-destabilizing protein Op18/stathmin (Op18) and into complexes formed by Op18 with tubulin. The deuterium-labeled cross-linking reagents bis(sulfosuccinimidyl)-glutarate-d4, -pimelate-d4, and -sebacate-d4 were prepared together with their undeuterated counterparts and applied as a 1:1 mixture of the respective d0 and d4 isotopomers. The resulting d0/d4 isotope tags allowed a straightforward mass spectrometric detection of peptides carrying the linker even in complex enzymatic protein hydrolysates. In the structure elucidation of the linked peptides by MS/MS, the assignment of the linked amino acids was again greatly facilitated by the d0/d4 tag. By applying two cross-linkers with similar reactivity but different spacer length in parallel, even doublets with very low intensity could be assigned with high confidence in MS and MS/MS spectra. Since in the Op18-tubulin complexes only a limited number of peptides carried the linker, the identification of the involved proteins per se was not impeded, thus accomplishing both protein identification and characterization of interacting sites in the same experiment. This novel methodology allowed us to significantly refine the current view of the complex between Op18 and tubulin corroborating the tubulin "capping" activity of the N-terminal domain of Op18.  相似文献   

8.
Direct mass spectrometric quantification of peptides and proteins is compromised by the wide variabilities in ionization efficiency which are hallmarks of both the MALDI and ESI ionization techniques. We describe here the implementation of a fluorescence detection system for measurement of the UV-excited intrinsic fluorescence (UV-IF) from peptides and proteins just prior to their exit and electrospray ionization from an ESI capillary. The fluorescence signal provides a quantifiable measure of the amount of protein or peptide present, while direct or tandem mass spectrometric analysis (MS/MS) on the ESI-generated ions provides information on identity. We fabricated an inexpensive, modular fluorescence excitation and detection device utilizing an ultraviolet light-emitting diode for excitation in a ~300 nL fluorescence detection cell integrated into the fused-silica separation column. The fluorescence signal is linear over 3 orders of magnitude with on-column limits of detection in the low femtomole range. Chromatographically separated intact proteins analyzed using UV-IF prior to top-down mass spectrometry demonstrated sensitive detection of proteins as large as 77 kDa.  相似文献   

9.
A method for mass spectrometric peptide mapping was developed, based on hydrolysis of a solid protein by acid vapor followed by mass spectrometric analysis of the cleavage products. The method is applicable to lyophilized samples as well as proteins present in gels after separation by SDS-PAGE. The cleavage specificity was established using a number of standard proteins. Three different types of cleavages were observed: specific internal backbone cleavages at Asp, Ser, Thr, and Gly and N- and C-terminal sequence ladders. On the basis of the observed cleavage characteristics, a strategy for protein identification based on the peptide mass maps was developed. The identification strategy utilizes the specific internal backbone cleavages as well as the partial sequence information, obtained from the sequence ladders.  相似文献   

10.
Wu S  Lu JJ  Wang S  Peck KL  Li G  Liu S 《Analytical chemistry》2007,79(20):7727-7733
A novel staining method and the associated fluorescent dye were developed for protein analysis by capillary SDS-PAGE. The method strategy is to synthesize a pseudo-SDS dye and use it to replace some of the SDS in SDS-protein complexes so that the protein can be fluorescently detected. The pseudo-SDS dye consists of a long, straight alkyl chain connected to a negative charged fluorescent head and binds to proteins just as SDS. The number of dye molecules incorporated with a protein depends on the dye concentration relative to SDS in the sample solution, since SDS and dye bind to proteins competitively. In this work, we synthesized a series of pseudo-SDS dyes, and tested their performances for capillary SDS-PAGE. FT-16 (a fluorescein molecule linked with a hexadodecyl group) seemed to be the best among all the dyes tested. Although the numbers of dye molecules bound to proteins (and the fluorescence signals from these protein complexes) were maximized in the absence of SDS, high-quality separations were obtained when co-complexes of SDS-protein-dye were formed. The migration time correlates well with protein size even after some of the SDS in the SDS-protein complexes was replaced by the pseudo-SDS dye. Under optimized experimental conditions and using a laser-induced fluorescence detector, limits of detection of as low as 0.13 ng/mL (bovine serum albumin) and dynamic ranges over 5 orders of magnitude in which fluorescence response is proportional to the square root of analyte concentration were obtained. The method and dye were also tested for separations of real-world samples from E. coli.  相似文献   

11.
The direct combination of thin-layer gel electrophoresis and matrix-assisted laser desorption/ionization mass spectrometry has been demonstrated with good sensitivity and mass accuracy, offering potential advantages in speed and reduced complexity. Mass spectra have been obtained from isoelectric focusing, sodium dodecyl sulfate, and native gels with as little as 660 fmol of α- and β-chain bovine hemoglobin and 1 pmol of horse heart myoglobin loaded. CNBr digests were performed in situ, and the products were probed in-gel. Noncovalent complexes such as multimeric protein systems, enzyme inhibitor complexes, and protein-ligand complexes can also be characterized when gel electrophoresis is run under nondenaturing conditions. This approach shows promise for simplifying the interface between gel electrophoresis and mass spectrometry.  相似文献   

12.
We describe a rapid and efficient method for the identification of phosphopeptides, which we term mass spectrometric (MS) phosphopeptide fingerprinting. The method involves quantitative comparison of proteolytic peptides from native versus completely dephosphorylated proteins. Dephosphorylation of serine, threonine, and tyrosine residues is achieved by in-gel treatment of the separated proteins with hydrogen fluoride (HF). This chemical dephosphorylation results in enrichment of those unmodified peptides that correspond to previously phosphorylated peptides. Quantitative comparison of the signal-to-noise ratios of peaks in the treated versus untreated samples are used to identify phosphopeptides, which can be confirmed and further studied by tandem mass spectrometry (MS/MS). We have applied this method to identify eight known phosphorylation sites of Xenopus Aurora A kinase, as well as several novel sites in the Xenopus chromosome passenger complex (CPC).  相似文献   

13.
A competitive fluorescence microplate assay based on a red-shifted green fluorescent protein (rsGFP) and a blue fluorescent protein (BFP) was developed for the detection of two model peptides in the same sample. The assay employed gene fusion to prepare the fluorescently labeled peptide conjugates. Specifically, plasmids were constructed in which the genes encoding for the two small peptides (less than 12 amino acids in length) were fused to either the gene of the rsGFP or the BFP, as desired. The newly constructed plasmids were transformed into E. coli for expression of the fusion proteins. By employing the technique of gene fusion, one-to-one homogeneous populations of peptide-rsGFP or -BFP conjugates were produced. These peptide-GFP mutant conjugates exhibited the same excitation and emission spectral characteristics as the unmodified proteins. The naturally fluorescent proteins act as labels to provide sensitive dual detection of the two selected small peptides in a competitive assay format. To our knowledge, this is the first time that mutants of GFP, such as the rsGFP and BFP, have been used as quantitative labels for the development of a dual-analyte fluorescence immunoassay.  相似文献   

14.
An electrophoretic method has been developed for the extraction of peptides following in-gel digests of SDS-PAGE separated proteins. During electroextraction, the peptides are trapped on a strong cation-exchange microcartridge, before analysis by capillary LC--ESI-tandem mass spectrometry. The spectra obtained by tandem mass spectrometry are searched directly against a protein database for identification of the protein from which the peptide originated. By minimizing surface exposure of the peptides during electroextraction, a reduction of the detection limits for protein identification is realized. The performance of the peptide electroextraction was compared directly with the standard extraction method for in-gel protein digests, using a standard dilution series of phosphorylase B and carbonic anhydrase, separated by SDS-PAGE. The lowest gel loading in which phosphorylase B was identified using the standard extraction method was 2.5 ng or 25 fmol, and the lowest gel loading in which phosphorylase B was identified using electroextraction was 1.25 ng or 12.5 fmol. The design of the microextraction cartridge allows for direct interfacing with capillary LC, which is crucial for maintaining low detection limits. Furthermore, this method can be used for high-throughput proteomics since it can be easily multiplexed and requires only voltage control and low pressures (approximately 15 psi) for operation. We believe that peptide electroextraction is a significant advance for identification of proteins separated by one-dimensional or two-dimensional gel electrophoresis, as it can be easily automated and requires less protein than conventional methods.  相似文献   

15.
A protocol for mass spectrometry of gel-separated proteins resulting in significantly increased sequence coverage and in improved possibilities for detection and identification of posttranslational modifications was developed. In relation to the standard in-gel digestion procedure, the sequence coverage using a combination of matrix-assisted laser desorption/ionization and electrospray ionization mass spectrometry was on the average increased by 30%. The method involves electroblotting of the gel-separated proteins to a poly(vinylidene difluoride) membrane. The proteins are extracted from the membrane using a solution of 1% trifluoroacetic acid in 70% acetonitrile and lyophilized. After reconstitution of the protein extract in digestion buffer, proteolytic cleavage is carried out in-solution as opposed to the standard in-gel digestion procedure. This allows recovery of large and hydrophobic peptides for mass spectrometry and reduces the risk for entrapment of proteolytic peptides in the gel matrix. The method was applied to proteins in the 30-40-kDa range with highly different structural properties. The improved ability to localize and determine protein modifications is shown for N-terminal acetylation and methylation of a histidine residue. Furthermore, the method enables fast screening of homologous protein sequences.  相似文献   

16.
Proteins were separated by microchip capillary electrophoresis and labeled on-chip by postcolumn addition of a fluorogenic dye, NanoOrange, for detection by laser-induced fluorescence. NanoOrange binds noncovalently with hydrophobic protein regions to form highly fluorescent complexes. Kinetic measurements of complex formation on the microchips suggest that the reaction rate is near the diffusion limit under the conditions used for protein separation. Little or no band broadening is caused by the postcolumn labeling step. Lower limits of detection for model proteins, alpha-lactalbumin, beta-lactoglobulin A, and beta-lactoglobulin B, were <0.5 pg (approximately 30 amol) of injected sample. The relative fluorescence and reaction rates are compared with those of a number of other fluorogenic dyes used for protein labeling.  相似文献   

17.
We report a method for the assay of proteins at concentrations lower than 10(-)(10) M with as little as 200 amol of protein. High sensitivity is accomplished by derivatizing the ε-amino group of the protein's lysine residues with the fluorogenic dye 5-furoylquinoline-3-carboxaldehyde and use of a sheath flow cuvette fluorescence detector. Most proteins have a large number of lysine residues; therefore, a large number of fluorescent molecules can be attached to each protein molecule. In general, precolumn labeling improves sensitivity but degrades resolution due to the inhomogeneity of the reaction products from multiple labeling. However, we demonstrate that, through careful manipulation of the separation and reaction conditions, high sensitivity can be obtained without excessive loss in separation efficiency. Over 190?000 theoretical plates are obtained for fluorescently labeled ovalbumin.  相似文献   

18.
We describe a whole-capillary, multicolor laser-induced fluorescence scanner for microfluidic protein analysis systems. Separation of proteins is achieved by isoelectric focusing in a short length of fused-silica capillary after which the resolved proteins are immobilized to the capillary wall using photochemistry. The capillary is then evacuated, and fluorescently labeled antibodies are flowed through the capillary to bind to the immobilized proteins. This technique provides high sensitivity, the ability to spatially resolve and quantify proteins, and provides the opportunity for complete automation. Results obtained by fluorescence detection are compared to those obtained by chemiluminescence while offering enhanced resolution and signal stability.  相似文献   

19.
Wang Z  Dunlop K  Long SR  Li L 《Analytical chemistry》2002,74(13):3174-3182
The availability of a suitable database is critical in a proteomic approach for bacterial identification by mass spectrometry (MS). The major limitation of the present public proteome database is the lack of extensive low-mass bacterial protein entries with masses experimentally verified for most bacteria. Here, we present a method based on mass spectrometry to create protein mass tables specifically tailored for bacterial identification. Several issues related to the detection of bacterial proteins for the purpose of database creation are addressed. Three species of bacteria, namely, Escherichia coli, Bacillus megaterium, and Citrobacter freundii, which can be found in the ambient environment, were chosen for this study. Direct matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) MS analysis of each bacterial extract reveals 20-29 protein components in the mass range from 2000 to 20,000 Da. HPLC fractionation of bacterial extracts followed by off-line MALDI-TOF analysis of individual fractions detects 156-423 components. Analysis of the extracts by HPLC/electrospray ionization MS shows the number of detectable proteins in the range of 46-59. Although a number of components were common to the three detection schemes employed, some unique components were found using each of these techniques. In addition, for E. coli where a large proteome database exists in the public domain, a number of masses detected by the mass spectrometric methods do not match with the proteome database. Compared to the public proteome database, the mass tables generated in this work are demonstrated to be more useful for bacterial identification in an application where the bacteria of interest have limited protein entries in the public database. The implication of this work for future development of a comprehensive mass database is discussed.  相似文献   

20.
Isoaspartate formation is a ubiquitous post-translation modification arising from spontaneous asparagine deamidation or aspartate isomerization. The formation of isoaspartate inserts a methylene group into the protein backbone, generating a "kink", and may drastically alter protein structure and function, thereby playing critical roles in a myriad of biological processes, human diseases, and protein pharmaceutical development. Herein, we report a chemo-enzymatic detection method for the isoaspartate protein, which in particular allows the affinity enrichment of isoaspartate-containing proteins. In the initial step, protein isoaspartate methyltransferase selectively converts isoaspartates into the corresponding methyl esters. Subsequently, the labile methyl ester is trapped by strong nucleophiles in aqueous solutions, such as hydrazines to form hydrazides. The stable hydrazide products can be analyzed by standard proteomic techniques, such as matrix-assisted laser desorption ionization and electrospray ionization mass spectrometry. Furthermore, the chemical trapping step allows us to introduce several tagging strategies for product identification and quantification, such as UV-vis and fluorescence detection through a dansyl derivative. Most significantly, the hydrazide product can be enriched by affinity chromatography using aldehyde resins, thus drastically reducing sample complexity. Our method hence represents the first technique for the affinity enrichment of isoaspartyl proteins and should be amendable to the systematic and comprehensive characterization of isoaspartate, particularly in complex systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号