首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
转炉留渣双渣工艺两阶段脱磷对比   总被引:1,自引:0,他引:1  
王林珠  包燕平  李翔 《钢铁》2019,54(8):37-42
 为了获得两阶段脱磷的关键工艺参数,通过统计100 t转炉留渣双渣工艺生产数据,比较了脱磷及脱碳阶段的脱磷有利条件,研究结果表明,两阶段脱磷条件对脱磷效果的影响规律存在显著差异,脱磷阶段炉渣碱度为1.8~2.2、Fe2O3质量分数为23%~28%、钢液温度为1 350~1 400 ℃时,可获得最优的脱磷效果;脱碳阶段炉渣碱度为3.2~5.2、Fe2O3质量分数为18%~30%、钢液温度为1 600~1 700 ℃时,提高炉渣碱度及Fe2O3质量分数或降低钢液温度可获得更优的脱磷效果;脱磷、脱碳阶段都没有达到热力学平衡,但脱磷阶段与热力学平衡差距更大,脱碳阶段更接近热力学上的平衡。  相似文献   

2.
为了减少RH吹氧升温对洁净度的影响,汽车用钢在转炉冶炼过程中终点温度往往更高,从而导致转炉冶炼过程脱磷困难。通过对渣钢间脱磷热力学和动力学的计算,分析了转炉"留渣+双渣"工艺条件下磷分配比与钢液成分、炉渣成分以及温度的关系;结合工业生产试验,通过改变倒渣时间以及调整炉渣成分并对转炉冶炼过程钢液、炉渣连续取样,研究了转炉"留渣+双渣"工艺条件下的脱磷变化规律并得出了快速脱磷的工艺条件:吹炼开始加入小块废钢和轻薄料快速增加炉渣FeO含量并控制钢液温度的升高,吹氧量达到40%时倒出高磷含量炉渣;吹氧量为40%~80%期间增加炉渣FeO含量,减少炉渣返干,防止钢液回磷;转炉终渣碱度控制在4.0左右,终渣TFe质量分数在18%~20%和尽量低的出钢温度。  相似文献   

3.
对韶钢120 t复吹转炉双渣法冶炼低磷钢工艺进行了试验研究.结果表明,当转炉冶炼条件满足:铁水磷含量为0.13!,半钢炉渣碱度控制在2.0左右,TFe含量控制在15!左右,半钢倒渣量40!~60!的工况条件下,半钢平均脱磷率可达56!,最高达75!,冶炼终点钢水平均磷含量控制在0.011!,平均脱磷率为91.73!,满足了低磷钢生产要求.  相似文献   

4.
《炼钢》2015,(3)
对复吹转炉脱磷过程进行了热力学及物料和热平衡计算,并在此基础上进行了冶炼过程的理论模拟,得出"双渣法"脱磷期的工艺要点:脱磷期低温、适当碱度有利于促进磷的脱除;提高脱磷渣倒出率可以有效降低过程石灰消耗与渣量。工业试验取得了良好的效果:石灰、白云石消耗分别降低25.00%、36.67%,冶炼前期平均脱磷率62.95%,冶炼过程平均脱磷率90.72%。通过对脱磷率影响因素分析得出,脱磷期控制工艺为R=1.80~2.00,w(T.Fe)=16.00%~20.00%,T=1 400~1 420℃;脱碳期控制工艺为R=3.20~3.60,w(T.Fe)=16.00%~20.00%,T=1 600~1 640℃。  相似文献   

5.
葛允宗  张本亮  陈正春  王辉 《宽厚板》2015,(2):23-25,29
通过对宁钢180 t转炉终渣碱度(R)、氧化性(Fe O)与脱磷率之间关系的研究,发现碱度与氧化性呈正相关关系,将终渣碱度控制在3.40~3.80区间时,能够同时保证(Fe O)≤20%,脱磷率85.5%。此外,基于降低转炉冶炼辅料消耗的思路,对转炉终渣(Mg O)含量和炉衬维护进行了分析,认为将终渣(Mg O)含量控制在8.0%~8.5%能够满足生产需求。  相似文献   

6.
为实现低磷钢批量生产,通过控制冶炼过程工艺参数并采取双渣法脱磷,使倒渣温度控制在1 350~1 400℃;冶炼时间控制在350 s;炉渣碱度控制在1.7~2.0,使前期脱磷率控制在70%以上。转炉终点平均出钢P含量由0.012%降低至0.009%,出钢温度由1 642℃提升至1 649℃,取得了良好的脱磷效果。  相似文献   

7.
在统计分析了转炉前期炉渣碱度和钢水温度,终点炉渣碱度、终渣全铁含量和终点钢水温度对脱磷率影响的基础上,优化了0.29%Si,0.085%P铁水180t复吹转炉的高磷钢冶炼工艺。200炉冶炼结果表明,通过使用低枪位使钢水快速脱碳升温,控制前期炉渣碱度≥2.2、终点炉渣碱度2.8~3.2,终点炉渣全铁含量≤17%,转炉出钢温度1 650~1 680℃,可控制脱磷率≤60%,终点钢水磷含量均值为0.035%。  相似文献   

8.
转炉渣用于铁水预脱磷的工艺实验   总被引:1,自引:0,他引:1  
 研究了转炉渣剂的组成及相关工艺因素对铁水脱磷率的影响。结果表明:为降低转炉渣的熔化温度以适应铁水预处理温度的要求,转炉渣的CaF2添加量应控制在15%~20%;采用80%的转炉渣和20%的CaF2配制的转炉渣剂对铁水进行脱磷处理时,脱磷率可达到78%左右;另外,转炉渣剂中的P2O5能显著降低铁水脱磷率。  相似文献   

9.
针对铝酸钙系精炼钢包铸余渣代替萤石作为转炉助熔剂对脱磷效率的影响,首先利用Factsage热力学软件对比计算分析了Al2O3、CaF2作为转炉炉渣助熔剂,对脱磷产物活度及磷容量的影响规律,并在实验室硅钼炉上对脱磷效率影响规律进行了对比研究。在此基础上,研究了精炼钢包铸余渣代替萤石的替代比例及应用效果。结果表明,分别以Al2O3、CaF2作为转炉脱磷助熔剂时,二者对炉渣碱度的控制要求相当;CaF2的助熔能力明显强于Al2O3,而Al2O3能降低脱磷产物的活度,增加炉渣磷容量,相比CaF2对脱磷反应具有热力学优势;w((Al2O3))为5.0%~9.0%的炉渣达到的脱磷效率,与w((CaF2))为3.0%~6.0%时相当;用武钢铝酸钙系钢包精炼铸余渣代替萤石作为转炉炼钢脱磷助熔剂,其与萤石的替换比例为2.5∶1,冶炼过程炉渣熔化良好,转炉终点钢水脱磷率提高3.0%左右。  相似文献   

10.
王星  胡显堂  危尚好  周冬升  王东  刘敏 《钢铁》2022,57(11):53-63
 转炉具备冶炼低磷钢的生产能力,但生产超低磷9Ni钢,转炉脱磷工艺仍然是主要难点和研究重点。分析了钢水温度、炉渣碱度、FeO和渣量等对转炉脱磷的影响规律,并结合现场工装设备条件,对转炉双联法、三渣法、双渣法3种脱磷模式进行试验对比。双联脱磷工艺半钢温降大、单炉周期长、生产组织难度大,三渣法操作过程复杂、终点磷控制优势不明显。双渣法冶炼周期短,通过优化转炉脱磷工艺,实现了采用双渣法冶炼工艺生产超低磷钢,简化了超低磷钢转炉冶炼流程,提高了生产效率。研究了转炉脱磷主要工艺参数,分析得出采用脱碳氧枪喷头时,供氧流量按脱碳吹炼流量的83.5%控制,可达到良好的脱磷效果并减少铁水碳的烧损;脱磷期半钢碳含量不宜控制过低,半钢碳质量分数为3.0%~3.5%时能保证前期的脱磷效果和脱碳期的热量。脱磷期温度控制在1 300~1 350 ℃,脱磷率较高也有利于炉渣熔化。炉渣碱度为1.8~2.2时,可保证较高的脱磷率和化渣效果。一次倒渣量40%以上,脱碳期终点温度按1 590~1 610 ℃控制,终渣FeO质量分数不小于20%,终渣碱度大于6,转炉终点磷质量分数可降低到0.002%以下。采用下渣检测系统和滑板挡渣操作,严格控制下渣量,出钢采用磷含量低的合金,炉后钢水增磷可控制在小于0.000 5%。通过工业试验,实现了铸机成品磷质量分数小于0.002%。  相似文献   

11.
摘要:在国内某转炉钢厂采用“留渣 双渣”工艺技术进行脱磷工艺试验。结果表明:随着转炉前期脱磷率不断升高,终点脱磷率不断提高。铁水硅含量对前期脱磷率的影响最大。根据铁水成分,在冶炼前期适当降低供氧强度、降低气固氧比、加入适量石灰及烧结矿,均有利于前期脱磷率的提高。在一倒时每吨钢液加入4~8kg石灰,不影响出钢温度,可提高一倒-终点阶段脱磷率,同时可提高终点脱磷率。从终点的控制效果可知,终点炉渣碱度应保持不小于3.0,炉渣中FeO质量分数在16%~20%,并适当降低终点出钢温度在1610~1630℃,有利于终点脱磷率的提高。通过加强熔池搅拌,促进钢渣反应趋于平衡,有利于终点磷分配比提高,从而可进一步提高终点脱磷率。  相似文献   

12.
The dephosphorization process test was carried out in a domestic converter steel plant by using the “remaining slag double slag” process technology. The results show that with the increasing of dephosphorization rate in early stage of converter, the end point dephosphorization rate increases continuously. The silicon content in molten iron has the greatest influence on the dephosphorization rate in early stage. According to the composition of molten iron, properly reducing the oxygen supply intensity, reducing the gas solid oxygen ratio,adding an appropriate amount of lime and sinter in early stage of smelting are conducive to the improvement of dephosphorization rate in early stage. Adding lime of 4-8kg per ton of molten steel in the first turn down stage does not affect the tapping temperature, which can improve the dephosphorization rate in the first turn down to end point stage and the end point dephosphorization rate at the same time. From the control effect of the end point, the alkalinity of the end point slag should not be less than 3.0, the mass fraction of FeO in the slag should be 16%-20%, and the end point tapping temperature should be appropriately reduced to 1610-1630℃, which is conducive to the improvement of the end point dephosphorization rate. By strengthening of the stirring of molten pool and promoting the balance of the steel slag reaction, it is conducive to improvement of the end point phosphorus distribution ratio, so as to further improve the end point dephosphorization rate.  相似文献   

13.
邢钢一步法(脱磷站+60t AOD+60t LF)生产400系易切削不锈钢过程中,前期采用硫铁全部在AOD出钢时加入配[S],AOD出钢至上机浇铸过程中钢渣碱度始终处于低碱度范围(R=1.40~1.95),硫铁消耗较大,钢液氧含量偏高,随着冶炼炉数的增加,炉衬侵蚀严重,影响AOD炉龄和钢坯质量,且钢渣较长时间处于低碱度状态,极易造成钢中[C]含量的上升(尤其是430F、430FR低碳类钢种),很难实现多炉连浇。后期通过优化硫铁加入方式,在LF后期加硫铁,AOD炉渣碱度2.0~2.3,LF炉渣碱度1.6~2.0,缩短低碱度渣处理时间,降低[S]损耗和钢液氧含量及对炉衬侵蚀。使易切削不锈钢[S]的收得率由62%提高到75%,吨钢硫铁消耗下降2.12 kg,铸坯皮下气泡等缺陷得到控制。  相似文献   

14.
赵斌  吴伟  吴巍  张娜  褚晓锐 《中国冶金》2022,32(6):155-162
为了满足生产超低磷钢的预脱磷要求,对不锈钢铁水脱磷工艺进行介绍。在45 t钢包中进行石灰喷粉+吹氧的工业试验,结果表明,在铁水脱硅期达到预期效果(铁水w([Si])≤0.1%)后,铁水脱磷期可实现平均脱磷率大于88%。根据试验数据,分别回归出脱硅期和脱磷期的脱磷率、磷分配比的计算公式。通过添加萤石能够获得较好的铁水脱磷效果,随着铁水硅含量变化,铁水温度、吨钢耗氧量、石灰消耗量、炉渣碱度的增加,铁水的脱磷率明显增加。炉渣w((TFe))的增加对铁水脱磷率的影响不显著。研究认为,目前采用的石灰喷粉+吹氧冶炼进行铁水脱磷处理是行之有效的不锈钢铁水脱磷方法。  相似文献   

15.
阐述了脱磷炉相关工艺研究以及与常规转炉冶炼时的主要技术指标对比情况。主要工艺有少渣高效冶炼工艺、底吹系统优化,底吹深脱磷工艺、底吹可视化工艺,转炉终点静止脱碳工艺。技术指标对比分析结果显示:脱磷炉终点平均磷含量为O.014%,常规转炉终点平均磷含量为0.019%,脱磷炉脱磷效果明显;脱磷炉石灰消耗控制在41.45kg/t,常规转炉石灰消耗控制在53.27kg/t;脱磷炉终点渣中平均TFe含量为11.73%,常规转炉终点渣中平均TFe含量为14.38%,脱磷炉金属收得率高;脱磷炉平均终点钢水残锰0.102%,常规转炉平均出钢残锰0.075%,脱磷炉合金消耗少;脱磷炉平均喷溅渣量为3.93kg/t,常规转炉平均喷溅渣量为13.23kg/t,脱磷炉过程控制平稳,金属损耗少;脱磷炉冶炼钢水终点碳氧积为0.002129,常规转炉冶炼钢水终点平均碳氧积为0.002659。脱磷炉控制水平较好。  相似文献   

16.
为优化转炉冶炼工艺,进行了180 t顶底复吹转炉的少渣低温高效冶炼试验,实现前期渣碱度平均为1.91,前期脱磷率平均为56.25%,后期渣碱度平均为3.02,终点脱磷率平均大于90%,过程石灰、白云石消耗分别降低30%、20%以上。得出冶炼前期碱度为1.5~2.0,熔池温度为1350~1400℃更有利于铁水磷的脱除;随终点出钢温度与终渣碱度的提高,终点出钢磷质量分数增加;分析前期的快速化渣有利于铁水磷更多地脱除到前期渣中;冶炼后期的少渣操作容易造成“返干”,是影响后期冶炼效果的关键因素。  相似文献   

17.
吴龙  石昌民  李晶  许中波  韩啸  姚永宽 《钢铁》2017,52(1):32-37
 为了进一步降低炼钢成本,南京钢铁股份有限公司100 t复吹转炉,基于单渣法操作,依托现有造渣料,通过转炉磷收支平衡和脱磷热力学计算,得出转炉脱磷所需的最小渣量,在单渣法终渣热态返回利用的基础上,探索出成本最低的适宜渣料冶炼技术,实现了石灰吨钢消耗降低42.4%,白云石吨钢消耗降低12%,石灰石吨钢消耗增加34.3%,吨钢成本降低4.64元/t。  相似文献   

18.
张明博  仇圣桃  朱荣  韩宇 《特殊钢》2016,37(3):13-19
通过共存理论计算和热力学分析得出添加锂云母矿形成的CaO-MgO-FeO-Li2O-Na2O-K2O-SiO2-P2O5复合脱磷渣的渣-钢磷分配比Lp明显高于CaO-MgO-FeO-SiO2-P2O5基本渣系,并确定锂云母矿的加入最佳时期是转炉吹炼前期。10炉120 t转炉冶炼的超低磷钢的结果表明,与未加锂云母矿的炉次相比,加锂云母矿可以使半钢[P]快速降低至0.044%以下,并且半钢脱磷率和磷分配比Lp分别从40.62%和13.13提高到67.71%和36.89,使转炉平均终点脱磷率和磷分配比Lp分别从92.35%和130.7提高到94.85%和191.9,转炉终点[P]可以控制在0.005%~0.007%,[P]的命中率100%,此复合渣系满足超低磷钢生产要求。  相似文献   

19.
研究了120 t转炉在终点钢水平均温度1630℃,平均终渣碱度4.0时,终点[C](0.029%~0.176%)对终点[P]和磷分配比的影响。34炉次冶炼结果表明,终点出钢磷含量随着碳含量的减小而降低,当碳含量低于0.06%时,有利于实现磷含量低于0.005%出钢;随着终点碳含量的降低,渣钢间的磷分配比增大,炉渣脱磷能力增强;在同等工艺条件下,终点碳含量越低,供氧时间越长,吹氧和碳氧反应对熔池的搅拌作用有利于进一步脱磷。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号