首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
为研究交联聚乙烯(cross-linked polyethylene,XLPE)绝缘材料的热分解活化能、电气特性和力学特性随热老化程度变化的规律,对交流电力电缆绝缘用XLPE材料在110 ℃下开展加速热老化实验。采用热失重(thermogravimtric analyzer, TGA)测试手段,对XLPE在20~600 ℃的热分解行为进行研究;采用交流击穿测试、宽频介电谱测试及体积电阻率测试,研究老化后XLPE试样的电气特性;采用拉伸实验测试,研究老化后XLPE试样的力学特性。结果表明:热老化使得XLPE的交联结构和结晶状态被破坏,XLPE活化能呈减小趋势。由于氧化反应快速进行,使得XLPE分子链发生断裂,交联结构变弱,导致XLPE绝缘材料严重劣化,其活化能、击穿强度、体积电阻率、弹性模量和断裂伸长率随老化时间增长呈下降趋势,而介电常数、介电损耗和电导率呈增加趋势。  相似文献   

2.
为研究交联聚乙烯(cross-linked polyethylene,XLPE)绝缘材料的热分解活化能、电气特性和力学特性随热老化程度变化的规律,对交流电力电缆绝缘用XLPE材料在110 ℃下开展加速热老化实验。采用热失重(thermogravimtric analyzer, TGA)测试手段,对XLPE在20~600 ℃的热分解行为进行研究;采用交流击穿测试、宽频介电谱测试及体积电阻率测试,研究老化后XLPE试样的电气特性;采用拉伸实验测试,研究老化后XLPE试样的力学特性。结果表明:热老化使得XLPE的交联结构和结晶状态被破坏,XLPE活化能呈减小趋势。由于氧化反应快速进行,使得XLPE分子链发生断裂,交联结构变弱,导致XLPE绝缘材料严重劣化,其活化能、击穿强度、体积电阻率、弹性模量和断裂伸长率随老化时间增长呈下降趋势,而介电常数、介电损耗和电导率呈增加趋势。  相似文献   

3.
世界首条500 kV交联聚乙烯(XLPE)海缆已于2018年底在舟山敷设完成。为了研究500 kV XLPE海缆绝缘材料的绝缘与老化特性,对交流500 kV XLPE海缆绝缘材料进行不同温度下的短时工频击穿试验和步进应力工频击穿试验,并运用反幂模型对该材料在电-热应力下的寿命进行计算。结果表明:该500 k V XLPE海缆绝缘材料的短时工频击穿强度在25~85℃内呈现先上升后下降的趋势,工频击穿强度显著下降的阈值温度在70℃左右;相同温度下,步进应力下的工频击穿强度随加压时间步长上升而下降;相同加压时间步长下,步进应力下的工频击穿强度和耐压时间均随温度升高先增大后减小;寿命指数n和常数C随温度的升高也呈现先上升后下降的趋势。最后提出了基于反幂模型的该交流500 kV XLPE海缆材料的寿命计算公式,可为该材料类型海缆的寿命计算以及采用该材料进行电缆结构设计提供参考。  相似文献   

4.
运行老化交联聚乙烯(cross-linked polyethylene, XLPE)电缆导体屏蔽层侧的绝缘缺陷尚未引起充分关注。该文对新电缆及退运的老化电缆进行了超低频介损和微观理化性能对比测试,发现退运电缆处于严重老化状态,且导体屏蔽层侧的绝缘内部存在连续的片状老化缺陷。对退运电缆进行扫描电镜测试发现,导体屏蔽层与内侧绝缘层存在大量微孔。能谱分析证明,电缆老化后的导体屏蔽层及内侧绝缘中均有少量铝(Al)元素的存在。进一步采用红外光谱测试发现导体屏蔽层中的乙烯共聚物(ethylene-vinyl acetate copolymer,EVA)产生了老化降解,且内侧绝缘存在较为明显的羰基与羟基的红外吸收峰。因此,电缆运行过程中导体屏蔽层中的EVA可能存在一定程度的老化降解,降解产物进入绝缘内部参与XLPE的氧化降解反应,进而导致了导体屏蔽层侧的绝缘内部出现连续片状老化缺陷。  相似文献   

5.
为了研究热老化对交流配电交联聚乙烯(cross-linked polyethylene,XLPE)电缆改为直流运行后电缆绝缘性能的影响,先对已运行两年的10kV交流XLPE电缆样段进行135℃加速热老化试验,随后采用车床和特质刀具将电缆样段沿轴向环切得到薄片试样,通过直流电导率、空间电荷测量、表面电位衰减和直流击穿测试,结合载流子迁移率、活化能和陷阱参数的计算,对老化前后交流配电XLPE电缆的直流绝缘性能进行研究.结果 表明:随着老化时间的增加,交流XLPE电缆绝缘试样的直流电导率和载流子迁移率先下降后上升,长期老化后空间电荷积累阈值场强与试样的活化能明显减小,试样的直流电导率随着测量温度的升高而增加,其空间电荷积累阈值场强随着测量温度的升高而减小;随着老化时间的增加,试样中积累的空间电荷由异极性转变为同极性,深陷阱数量与直流击穿场强均呈现先上升后下降的趋势;分析认为短期热老化有利于提高交流配电XLPE电缆改为直流运行后的直流绝缘性能.  相似文献   

6.
为深入探究交联聚乙烯(cross-linked polyethylene,XLPE)电缆绝缘的老化特性,评判XLPE电缆绝缘的老化程度,文中对110kV XLPE电缆绝缘在135℃进行加速老化实验,采用拉伸试验表征XLPE断裂伸长率的变化规律,采用傅里叶变换红外光谱表征XLPE中羰基浓度与抗氧剂含量的变化规律。结果表明,XLPE电缆绝缘老化存在临界时间现象,即随着老化时间的增长,XLPE断裂伸长率由缓慢下降转变为快速下降,羰基浓度由缓慢增大转变为快速增大,临界时间均为2016h;而抗氧剂含量则随老化时间逐渐下降,不存在拐点。基于链式自由基理论,建立考虑抗氧剂反应过程的XLPE热老化动力学模型,进一步仿真计算XLPE电缆绝缘热老化过程中抗氧剂含量和羰基浓度的变化过程,仿真计算结果能够很好地吻合实验结果。研究结果表明抗氧剂含量可用于表征XLPE电缆绝缘的老化程度。  相似文献   

7.
阎孟昆 《高电压技术》2010,36(8):1923-1927
为检验不同屏蔽材料对抗水树电缆抗水树枝能力的影响,建立了抗水树屏蔽材料性能试验手段和评价程序,在同一制造厂家分别采用两种不同电缆屏蔽材料,生产同一屏蔽结构的交联聚乙烯(XLPE)电力电缆,并制作成30段电缆试样。在相同试验条件下,进行14d负荷循环、120d加速老化、180d加速老化和360d加速老化,然后对老化前原始试样和老化后电缆试样共5种不同老化状态的电缆试样进行工频逐级击穿,试验研究不同屏蔽材料组成的XLPE电力电缆的工频击穿特性。试验结果表明,国产普通屏蔽材料制造的XLPE电力电缆的工频击穿特性相对进口抗水树电缆屏蔽材料制造的XLPE电力电缆的工频击穿特性存在明显差异,进口抗水树电缆屏蔽材料制造的XLPE电力电缆经过360d加速老化试验后仍保持较好的工频击穿特性,安全运行寿命较长。  相似文献   

8.
为解决电网中大量运行电缆的水树老化问题,采用一种能生成TiO2无机颗粒的修复液对水树老化交联聚乙烯(XLPE)电缆绝缘进行修复,研究了修复效果和绝缘提升机理。将修复液与水直接反应,利用数字电桥和扫描电镜(SEM)研究生成物的介电性能和微观特征。用水针电极法加速XLPE电缆绝缘水树老化,利用修复液对老化绝缘进行修复,测量了样本的击穿电压。通过SEM和能谱分析(XPS),对水树内的填充物进行了观察和分析。实验结果表明:该修复液能扩散到水树区域消耗水分、生成绝缘性能良好的有机-无机复合填充物填充水树空洞;同时,分析认为生成的大量TiO2颗粒能均匀电场、吸收紫外光、降低热电子加速,使修复后样本的击穿电压高于老化样本和新样本的击穿电压。通过实验研究证明,该修复液不但能修复水树老化电缆绝缘,还能进一步提升老化区域的击穿性能。  相似文献   

9.
通过自制掺杂纳米Si O_2和纳米炭黑的XLPE绝缘材料,研究了两种无机纳米颗粒对XLPE力学性能与电气强度的影响,测量了试样的拉伸率、断裂伸长率以及热老化前后的击穿电压和耐压时间。结果表明:添加纳米炭黑的XLPE试样具有最好的交联程度,材料韧性增加,而添加纳米Si O_2的XLPE试样的交联程度相对于纯XLPE试样变化不大,韧性减小,刚性增大;两种纳米颗粒的添加均使得XLPE电缆绝缘试样的击穿电压升高,同时耐压时间增加;热老化会降低XLPE绝缘材料的电气强度。  相似文献   

10.
交联聚乙烯(XLPE)具有优异的电绝缘性能和力学性能,但XLPE电缆绝缘在长期服役过程中会发生老化,造成供电故障及服役寿命缩短。为研究服役时间对XLPE电缆绝缘性能的影响,本文研究了XLPE电缆绝缘性能和超分子结构随服役时间增加的变化规律,讨论了退役电缆再利用的可能性。结果表明:当服役时间增加到30年时,电缆绝缘的拉伸强度和断裂伸长率分别从23.7 MPa和929%下降到19.0 MPa和832%,但断裂伸长率仍高于国家标准规定,即大于新电缆绝缘的50%;新电缆绝缘的熔点高于服役后的电缆绝缘,服役后XLPE电缆绝缘的熔程变宽,结晶度先升高后下降;随着服役时间的增加,XLPE电缆绝缘的球晶尺寸增大,服役30年的电缆绝缘球晶平均尺寸约为41μm,是新电缆绝缘的4~5倍;经过30年服役,XLPE电缆绝缘的耐击穿性能仍然优异,室温交流击穿强度约为140 kV/mm。  相似文献   

11.
通过对比110℃加速热老化后10 kV交流交联聚乙烯电缆试样交直流绝缘特性的差异,采用不同温度下宽频介电谱、交直流击穿、直流电导率和空间电荷测试,结合有限元仿真,研究了不同热老化时间作用下10 kV交流XLPE电缆绝缘的交、直流电气特性,以及改为直流运行后电缆绝缘的电场分布。结果表明:随着热老化时间的延长,XLPE试样的复介电常数实部先增加后增速减慢,高频区介质损耗逐渐增加;试样的电流密度先减小后增加,空间电荷积累阈值场强则呈相反变化趋势,且试样内的空间电荷积累逐步由异极性转变为同极性。随着测试温度的增加,同一老化时间下XLPE试样的介电常数实部减小,介质损耗增加;试样的电流密度增加,阈值场强减小,试样内部空间电荷积累量有所增加,交直流击穿场强下降。直流电压下,绝缘层在靠近缆芯处电场高,电场差值随绝缘试样活化能的减小而增加。长期热老化后,电缆绝缘层的直流电场分布更均匀,且空间电荷积聚问题得到改善,有利于提升10 kV交流电缆改为直流运行的可靠性。  相似文献   

12.
以110 kV XLPE高压电缆为研究对象,在高温下对电缆用XLPE绝缘材料进行加速热老化实验,对比研究有氧(空气)与无氧(硅油)环境下其热学和力学性能的变化规律。结果表明:热氧老化过程会加速XLPE绝缘中分子链的裂解,降低熔融温度和结晶度;氧气的存在使得XLPE绝缘的起始分解温度和热分解活化能降低,拉伸强度和断裂伸长率减小。相比于无氧环境的老化试样,热氧老化的试样热学和力学性能劣化更快。  相似文献   

13.
为了研究矿用高压屏蔽电缆结构尺寸对电场分布的影响,以6/l0 kV MYJV22矿用XLPE电缆为研究对象,利用ANSYS有限元软件建立了电缆结构模型,分析电缆半导电屏蔽层、绝缘层厚度、线芯半径及电缆长度对电场分布的影响,并通过电缆绝缘击穿强度的分析对研究结论进行了验证。结果表明:电缆中最大电场强度位于导体屏蔽表面处,且半导电屏蔽层结构对改善绝缘径向电场分布有很大的作用;最大电场强度随着绝缘层厚度的增加而减小,而击穿强度变化不大;随着电缆长度的增加,最大电场强度与击穿强度略微下降;随着线芯截面的增大,击穿强度随之下降,但绝缘层承受的最大场强也相应减小。  相似文献   

14.
基于有限元分析方法,以COMSOL Multiphysics为求解工具,建立了320 k V XLPE高压直流电缆终端模型。分析了不同载流量作用时,直流电压和直流叠加冲击电压作用下电缆终端内部的电场分布,并对直流叠加冲击电压作用下XLPE绝缘屏蔽层的搭接长度对界面电场的影响进行了分析。结果表明:直流电压作用下,XLPE/SR界面的切向场强随载流量增大而增大,而且最大场强的位置由应力锥端部转移至应力锥根部;直流叠加冲击电压作用下,界面切向场强在绝缘屏蔽层搭接位置出现畸变,最大场强值位于屏蔽层顶部;同时随着搭接长度的增大,界面切向场强逐渐减小,为防止电缆终端内部出现空气击穿现象,建议屏蔽层的搭接长度至少为25 mm。  相似文献   

15.
为探究高压交联聚乙烯(XLPE)电力电缆在运行一段时期后的绝缘性能变化表征及老化程度判别依据,对新电缆、实际运行年限为2 a、5 a、9 a和12 a的220 k V高压XLPE电缆绝缘的介质损耗因数频谱、氧化诱导期和工频击穿电场强度等进行了研究。对实际不同运行年限的电缆样本进行了轴向切片处理,制取了表面平整、厚度为1 mm的片状试样并进行了测试。试验发现:XLPE的低频介质损耗因数与老化程度存在对应关系,当频率在0.1 Hz以下时,介质损耗角正切值(tanδ)随老化程度而呈现明显线性上升趋势;随着运行年限的增长,XLPE电缆的氧化诱导期(OIT)与羰基指数这2项参数均同时增大;当运行年限达到约5 a和12 a时,XLPE电缆的击穿电场强度明显下降,运行年限为12 a电缆的击穿电场强度比新电缆的降幅可达约13%。对以上参数的测量都可以作为评估运行XLPE电缆老化状态的有效手段,其中测试运行XLPE电缆的绝缘击穿电场强度变化情况可以反映其综合老化程度,是适合于实际工程应用的简单有效方法。  相似文献   

16.
为了探究热-机械应力共同作用对电缆附件硅橡胶绝缘性能的影响,该文设计并开展了硅橡胶的热-力联合老化试验,对比分析了老化前后硅橡胶的力学性能、电气性能和微观结构。结果表明:随着老化程度的加剧,试样拉伸强度和断裂伸长率下降,硬度增加;老化后试样的击穿强度整体上呈现先增加后降低的趋势,在老化时间一定的情况下,击穿强度随着拉伸应力的增大而减小,相对介电常数逐渐增加。结合交联密度和红外光谱测试结果分析认为,在老化前期,硅橡胶主链间发生氧化交联反应,自由体积和载流子迁移率减小,击穿强度增加;老化后期,交联体系结构和分子链被破坏,自由体积和载流子迁移率增大,击穿强度下降。在机械应力耦合作用下,卷曲的分子链沿着机械应力方向被拉伸,且处于拉伸状态的分子链在高温作用下更容易发生断裂,造成材料绝缘性能的进一步劣化,为电缆附件硅橡胶老化状态评估提供了一定的理论依据。  相似文献   

17.
液体硅橡胶(LSR)以其优良的高弹性和绝缘性能在电缆附件、外绝缘中有着广泛应用,但长时间的运行发热会使其机械性能和绝缘性能下降,从而引发绝缘故障。开展120℃下硅橡胶试样的人工加速热老化实验,并对老化前后试样的介电性能和力学特性进行对比。结果表明:热老化后的硅橡胶试样体积电阻率增大,相对介电常数减小,击穿强度呈现出先有所增大后下降的变化;同时,试样的拉伸强度和断裂伸长率大幅度下降,而硬度逐渐增加,下降(增加)幅度随老化天数增加而增大。随着热老化试验的进行,液体硅橡胶的高弹性逐渐丧失,使得高分子链的柔顺性降低,敛集密度增加,从而导致交联程度增大,平均自由行程缩短,离子迁移率下降,这对现场液体硅橡胶的失效机理分析具有一定的理论价值和实际意义。  相似文献   

18.
为了研究XLPE电缆绝缘的老化特性,对110 kV商用XLPE电缆绝缘在130℃下进行实验室加速老化实验。采用太赫兹时域光谱仪分别测试参考试样和XLPE试样的时域信号,经过快速傅里叶变换获得相应的频域信号,并计算XLPE试样在0.5~2.5 THz内的介电常数实部和虚部。通过差示扫描量热仪和傅里叶变换红外光谱研究老化过程中试样化学结构的变化。结果表明:随着老化时间的延长,XLPE试样的结晶度减小,氧化产物增多,老化XLPE试样在0.5~2.5 THz的介电常数实部高于未老化试样,而介电常数虚部小于未老化试样。热老化过程中,XLPE发生了分子链断裂以及氧化反应,其化学结构被破坏,分子链段运动能力增强,导致XLPE在太赫兹频率的介电常数实部增大;老化导致XLPE的结晶度减小,晶格振动强度减弱,使得介电常数虚部减小。  相似文献   

19.
对交联聚乙烯(XLPE)电缆绝缘进行加速热氧老化,并在老化过程中揭示了富铜相杂质的存在。通过金相显微镜、扫描电子显微镜、差示扫描量热分析等手段研究了热氧老化过程中富铜相杂质对XLPE聚集态结构的影响,通过工频击穿实验研究了热氧老化过程中富铜相杂质对XLPE电气强度的影响。结果表明:富铜相杂质会引发XLPE球晶结构的加速破坏以及结晶度的加速下降,同时在XLPE绝缘的无定形区中观察到一些起源于富铜相杂质的树枝状裂纹,标志着XLPE绝缘中自由体积的增大。富铜相杂质还会导致XLPE绝缘工频电气强度的加速下降。富铜相杂质对XLPE绝缘聚集态结构和性能的影响主要是由于铜在氧化反应中起到催化剂的作用,导致氧化反应加速,造成XLPE的劣化加剧。氧化诱导期的测量结果表明,铜催化氧化反应只在XLPE中抗氧化剂被完全消耗后才会发生。  相似文献   

20.
随着电力电缆行业的持续发展,XLPE电缆绝缘检测技术受到越来越多的关注。对电缆绝缘老化状态的有效评估是当前电气设备管理一个十分重要和必不可少的过程。根据IEEE提出的有关电力电缆绝缘超低频(0.1 Hz)试验标准,提出一种对XLPE电缆绝缘分层取样,测量切片试样在0.1 Hz下的tanδ随外施电压的变化,以电压敏感度来判断绝缘老化程度的方法。通过测量不同运行年限的XLPE电缆绝缘,发现tanδ随外施电压的变化规律可以有效反映出不同运行时间绝缘老化状态的区别,绝缘内、中、外层的tanδ存在差异性。将老化电缆绝缘内层和中层的tanδ以外层tanδ测量值作为基准进行归一化,利用相对值的变化规律作为绝缘老化状态判断依据。实验结果表明,该方法对原始数据缺失的电缆绝缘老化状态评估是一种有效手段。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号