首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
前言 为了使电磁线圈、继电器等电气元件能有效利用磁性回路中磁感应线圈,在小功率时能正常动作,就要使用铁芯材料。以往使用的铁芯材料一般都是碳含量在0.1%左右的低碳钢,而近几年以汽车行业为代表,随电子控制元件的增加,要求其控制元件省电并小型化,因此对软磁特性优异的材料的需求更加迫切。  相似文献   

3.
采用粉末冶金技术可以制作形状复杂和具有良好磁性能的软磁材料,粉末冶金技术已被成功的应用于大规模商品生产软磁材料.已被作为商品生产的软磁粉末冶金材料有:纯铁、磷铁、镍铁、钴铁和硅铁等.  相似文献   

4.
高速冲击压制技术生产高密度粉末冶金产品   总被引:1,自引:0,他引:1  
本文介绍了近年来国内外高速冲击技术压制试验的概况,对高速冲击压制技术的优点进行了总结.其主要优点为高密度,制品的密度能够达到粉料理论密度的99%以上;其弹性后效小,所需的脱模力比传统静压方式降低30%以上;高速冲击压制能够用于成型5 kg的制品.本文的重点在于以下三个试验:(1)高速冲击压制和传统压制方式的比较;(2)10万件产品的HVC压制试验,模具的磨损情况;(3)采用高速冲击复压技术获得7.7 g/cm3以上的制品密度.  相似文献   

5.
利用粉末冶金技术制备纯铁软磁材料,在不同温度和压力下将不同粒径铁粉压制成生坯,并在保护气氛下进行烧结。结果表明:不同粒径铁粉混合有助于压坯密度的增加,适宜的压制温度可以有效地促进粉末流动,避免大尺寸孔洞的形成,优化组织。140℃、800 MPa温压条件下雾化铁粉压坯密度最高可达7.35 g·cm-3。对比常温压制,温压压坯烧结后孔洞分布均匀。烧结体密度随温度的升高而上升,雾化铁粉压坯在1250℃烧结后密度最高可达7.47 g·cm-3。在一定范围内,软磁材料磁性能与密度成正比,混粉压制试样的密度接近理论值,但在混合铁粉中,较细的铁粉夹杂于粗粉中,阻碍磁畴壁移动,造成饱和磁化强度(Ms)偏小、矫顽力(Hc)偏大的现象,Ms为205.51 emu·g-1,Hc为7.9780 Oe。  相似文献   

6.
降低电磁纯铁矫顽力的工艺研究   总被引:1,自引:0,他引:1  
贺光 《太钢科技》1996,(1):29-31
  相似文献   

7.
8.
非晶态软磁材料具有独特的结构和磁性能,从60年代至今,其从快冷非晶合金发展到现在的纳米晶软磁合金,对相关产业的发展和进步起到了巨大的作用。本文从非晶态物理的角度,综述了非晶态软磁材料的结构与磁性能的物理基础。  相似文献   

9.
10.
粉末冶金高速压制成形技术   总被引:9,自引:0,他引:9  
瑞典Hydropulsor AB公司制造并出售其独创的液压冲击机后,解决了长期以来限制高速压制技术工业化应用的设备问题,该技术将得到极大的推动。本文介绍了高速压制技术的一些特点,如压制速度、压坯密度分布等。讨论了在生产过程中所应采用的压制速度、模具几何尺寸等技术问题。  相似文献   

11.
块体纳米软磁材料的研究现状   总被引:2,自引:0,他引:2  
介绍了国内外块体纳米软磁材料的发展和应用情况。对块体纳米软磁材料的制备方法、纳米晶的形成机理、优异软磁性能的根源进行了探讨。阐述了未来块体纳米软磁材料的研究方向。  相似文献   

12.
烧结铁是一种好的软磁材料,但其磁通密度比铸造材料的低。低的磁通密度是由于密度低所引起的。本研究开发了一种温压与硬脂酸锂模壁润滑技术(WC-DWL)。使用该技术,得到了密度非常高的成形体。纯铁粉在1176MPa的压力下成形,经1523K烧结后的性能如下:密度=7.76Mg/m3,μm=5300,B160=1.16T,B240=1.28T,B400=1.40T,B2k=1.60T,bHc=110A/m。一些烧结铁表现出各向异性的变化与组织,这导致异常晶粒长大到长度为数毫米。这种异常长大在试样成形密度较高时更为明显。  相似文献   

13.
长期以来,金属注射成形是一种公认的制造软磁零件的有效方法,除了产品的最终形制造,在材料价格昂贵与难以切削加工两方面都有好处外,MIIM工艺还可改进磁性能,而且在选择材料方面也有较大的自由度。Dr David Whittaker述评了令使用产业越来越感兴趣的一组软磁材料的生产工艺、性能及应用。  相似文献   

14.
采用粉末冶金法制备了MnZn-FeNi复合软磁材料,采用排水法、金相显微镜和X射线衍射仪等手段,研究了样品的烧结过程、坯体的致密化、晶粒生长规律、样品的相结构.采用物理性能综合测试仪(PPMS)测定烧结体的磁性能,研究了材料的微观结构和材料软磁性能之间的关系,分析了样品磁性能变化规律.研究表明,样品密度随烧结温度升高而增大,当烧结温度超过1673 K以后,密度变化趋缓.在烧结过程中,影响材料致密性的主要因素为材料中的气孔和晶粒.随烧结温度升高,气孔向晶界和样品表面迁移,并且合并长大,同时,晶粒也发生长大.复合烧结软磁中的FeNi合金和MnZn软磁铁氧体仍保持原有的相结构,在1773 K的较高烧结温度时,软磁铁氧体出现分解,产生了部分杂相.通过优化烧结工艺,复合烧结软磁材料的烧结温度在1573~1673 K范围内时,样品取得了较好的磁性能,其磁性能为初始磁导率μi=1128,饱和磁化强度MMs=4349 kA·m-1.  相似文献   

15.
以磷酸为磷化剂对雾化铁粉进行磷化处理,然后在800 MPa压力下压制成环形生坯,分别在H2、N2和空气气氛下进行热处理,制成软磁复合材料磁芯,研究热处理气氛、热处理温度与时间对磁芯电磁性能的影响。结果表明:铁粉经磷化处理后,表面包覆完整均匀的磷酸盐绝缘层;与H2和N2气氛相比,磁芯压坯在空气气氛下热处理后拥有更高的磁导率和较小的磁损耗;空气气氛下500℃处理30 min是较优的热处理工艺,磁芯最大磁导率达到350,在频率为1 k Hz和饱和磁感1T条件下的磁损耗仅为145 W/kg,进一步延长热处理时间或提高热处理温度,磁导率增加不明显,但电阻率显著降低,导致磁损耗显著增加,软磁性能恶化。  相似文献   

16.
采用粉末冶金温压成形技术研制了非晶Fe78Si9B13软磁粉芯,分别研究了粘结剂233耐高温有机硅树脂和JH1123两种粘结剂对该种软磁粉芯的微观形貌、密度、磁导率、损耗、品质因数的作用,结果表明:粘结剂对提高粉末的压坯密度有重要作用,粘结剂的含量过高或过低都会降低磁粉芯的压坯密度。添加3.0%JH1123(质量分数,下同)粘结剂时获得的最高压坯密度是4.93 g/cm3。相比于硅树脂233粘结剂,同样含量下JH1123粘结剂对应的有效磁导率明显较高,添加3.0%JH1123粘结剂50 k Hz时的有效磁导率可达到最高值50.2(50 k Hz时)。50~200 k Hz下磁损耗均较小,品质因数在高频下可以保持在一个较高水平。  相似文献   

17.
粉末冶金高速压制技术的研究现状及展望   总被引:2,自引:1,他引:1  
介绍一种低成本高密度粉末冶金零件成形技术一高速压制技术,重点阐述该技术的特点、原理、关键技术分析、材料性能和应用前景.指出高速压制技术在成形高密度(7.4~7.8 g/cm3)和大尺寸零件(质量高达5kg)方面具有独特的优势,可实现多重压制,性价比高,具有中小型设备生产超大零件的能力,其实用性将不断取得突破.同时,指出高速压制技术目前存在的问题和未来的研究热点.  相似文献   

18.
包小倩  张真  高学绪 《工程科学学报》2014,36(11):1514-1519
采用单辊熔体快淬法制备宽6~8mm、厚30~40μm的Fe78.3Cu0.6Nb2.6Si9.5B9合金薄带.其直流磁性能为:饱和磁感应强度Bs=1.06T,剩磁Br=0.39T,矫顽力Hc=3.53A/m,最大磁导率μm=2.43mH/m;交流磁性能为:铁损P0.5T/1kHz=22.2W/kg,P0.2T/100kHz=864W/kg,对应的有效磁导率μe分别为833和1225.场发射高分辨扫描电镜观察发现,不同工艺参数制备的快淬带因晶化程度不同,对应的断口形貌特点也不同,非晶相和纳米晶复合的合金带断口可见镜面区和雾状区、周期性褶皱、河流状花样等,而晶化接近完全的合金带呈沿晶断裂.纳米力学探针研究表明,非晶相和纳米晶复合的合金带的微区硬度和弹性模量低于晶化接近完全的合金带.基于Luborsky法,利用自行设计的装置测量断裂应变,对材料的韧性进行半定量分析.  相似文献   

19.
介绍了粉末注射成形在粘结软磁、烧结软磁生产中的应用、研究开发状况。指出粉末注射成形是能够实现低成本生产新性能、新功能的磁体制造技术,强调利用注射成形技术实现磁性元器件结构功能一体化设计、制造的优势。  相似文献   

20.
以羰基铁粉和羰基镍粉为原料,采用金属注射成形(Metal injection molding,MIM)工艺制备Fe-50%Ni(质量分数)软磁合金,研究烧结气氛、烧结温度和时间以及热处理制度对其磁性能的影响。通过对不同工艺条件下试样的杂质含量、密度、金相和磁性能的分析,发现C、O等间隙杂质原子含量和热处理的冷却方式强烈地影响MIM Fe-50%Ni合金的最大磁导率和矫顽力,而相对密度是影响MIM Fe-50%Ni的饱和磁感应强度和初始磁导率的主要因素。试样经1 380℃氢气烧结3 h、650℃保温1 h再油淬,可获得最佳磁性能:饱和磁感应强度为1.496 T,矫顽力为4.8 A/m,最大磁导率为75.2 mH/m,初始磁导率为9.18 mH/m。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号