共查询到10条相似文献,搜索用时 15 毫秒
1.
疏水系统在船舶中担任疏干排污等重要工作,其工作时产生的管道流量及压力脉动是系统产生振动噪声的主要原因。降低系统流量压力脉动、抑制系统噪声的关键之一是掌握系统流量压力脉动特性。通过分析低噪声柱塞泵的结构原理,结合疏水系统管道结构,建立完整的疏水系统仿真模型;通过试验台对仿真模型的准确性进行验证;最后基于仿真模型,对疏水系统特性及压力脉动的影响因素进行研究。结果表明:流量压力脉动主要作用频率为5 Hz和20 Hz;阀开度及管道长度对压力脉动影响较大,泵参数变化的影响较小,后续设计优化应优先考虑出口管道。 相似文献
2.
飞机液压能源系统管路振动特性分析 总被引:3,自引:1,他引:2
针对由于飞机液压能源系统管路振动造成的故障问题,提出了管路振动系统是慢变参数系统的概念。为了全面描述液压能源系统管路的振动性,给出了一种实用的分析流体与固体管道发生流固耦合振动的工程方法。 相似文献
3.
4.
启停泵工况下,由于边界条件突变,压裂管柱内初始流动平衡体系被打破,产生水锤现象,从而造成管内液体流动参数随时间突变。水锤现象将引起管柱的剧烈振动,严重时甚至会造成管柱破裂与失效。为定量分析启停泵工况下压裂管柱的水锤效应及振动响应,建立了压裂液-管柱的流固耦合四方程模型,采用特征线法和空间插值法分析了井口及不同井深处管柱内的流速、动压力、轴向振动速度以及轴向附加应力的变化规律。研究结果表明:启泵过程中,由于压裂泵组排液流量具有一定周期性,会引起压裂管内液体流动压力变化,从而产生管柱附加应力,可能引发管柱振动;压裂液的压力波动值及管柱轴向振动速度随着井深的增加而减小。停泵阶段,受管内液体压力积聚影响,井口附近产生水锤压力波,并向井下传播,此时井口压力变化值最大,井底最小。此外,受管内压力变化影响,压裂管柱产生附加轴向拉力,且井口处最大、井底处最小。相较启泵工况,停泵工况更容易对管柱产生破坏。 相似文献
5.
智能井液压控制管线处于一个温度变化复杂的环境,并且液压油中含有少量气体,直接影响管线内流体特性,从而影响管线内压力、流量压力信号的准确性及潜在水锤问题的压力波动,甚至会导致井下液压控制工具无法正常作业。传统分析管道系统一维瞬变流建立在不考虑热交换即温度变化条件下,导致计算出来的末端压力值与末端水锤压力误差较大。为此,在传统瞬变流方程计算基础上,考虑温度变化及含气量对液压油密度、黏度及体积模量等因素的影响,优化具有显著温度变化的井下控制管线瞬变流计算模型。并以32号液压油为例,采用特征线法对井下管线非恒温瞬变流模型进行一维计算,对比分析受地温梯度影响下不同温度及含气率下末端压力流量信号和产生水锤时压力波动变化情况,为求解非恒温管线瞬变流提供一种思路,并且所求得的数值结果可为智能井流量控制阀开度动作精确控制及解码器系统水锤防护提供参考。 相似文献
6.
7.
8.
9.