首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
特高压交流系统三绕组自耦变压器非线性模型的研究   总被引:3,自引:0,他引:3  
建立精确的自耦变压器非线性模型是对1000kV交流输电系统谐波特性进行仿真分析的基础。本文基于单相三绕组自耦变压器的电磁关系,充分考虑激磁阻抗的影响,提出了一种适用于谐波分析、易于仿真实现的单相三绕组自耦变压器的非线性模型,然后分别引入ir-u和il-u瞬时特性曲线来求解激磁阻抗,并详细介绍了曲线的数值模拟方法。结合我国晋东南-南阳-荆门1000kV特高压交流试验示范工程中的主变参数在PSCAD/EMTDC中进行了建模和仿真,证明所建立的模型能够比较准确地反映自耦变压器的饱和特性,为搭建完整的1000kV交流输电系统仿真模型和进行其谐波特性分析提供了必要条件。  相似文献   

2.
相同感应地电场作用下,不同电压等级输电线路的地磁感应电流(geomagnetically induced currents,GIC)大小不同,以往的GIC计算集中在电网最高电压等级线路,通常忽略其他电压等级线路的GIC。交流特高压电网建设使我国电网增加了1 000 kV电压等级,综合考虑线路长度、单位阻值等GIC影响因素,准确计算包括500 kV超高压及1 000 kV特高压的多电压等级电网的GIC是重要研究课题。以我国多电压等级电网(三华电网)为例,分别考虑1 000 kV单电压等级网络(称电网1)和500、1 000 kV双电压等级网络(称电网2),建立了电网1及电网2的全节点GIC模型并提出了多电压等级电网的GIC算法,计算了两种感应地电场情况下电网1及电网2的GIC,比较了两种情况下电网1及电网2的GIC计算结果。计算结果表明,500 kV超高压电网的GIC对1 000 kV特高压变电站的GIC水平有较大的影响,在多电压等级电网的GIC计算中,不能只计算最高电压等级电网的GIC,而忽略次级高压电网GIC的影响。  相似文献   

3.
特高压交流输电技术在中国应用给继电保护装置的测试提出了新的要求,其关键在于如何建立能够准确反映特高压系统特性的动态模拟系统。文章介绍了中国电力科学研究院以1000kV晋东南—南阳—荆门特高压交流试验示范工程和1000kV淮南—上海同塔双回特高压输电工程为研究依据,设计并研制成功了特高压单回线路、同塔双回线路等模拟元件和调压补偿变独立于主体变压器的特高压中性点调压自耦变压器元件模型,建立了2个工程的动态模拟系统,以及相应的系统测试和试验结论。  相似文献   

4.
特高压自耦变压器的建模和电磁暂态仿真   总被引:3,自引:0,他引:3  
为了在特高压环境下正确应用变压器差动保护,需要对特高压变压器进行合理建模,并进行相应的电磁暂态仿真。根据三绕组自耦变压器星型等值电路的原理,用电磁暂态仿真软件EMTDC中的统一电磁等效电路(unified magnetic equivalent circuit,UMEC)普通三绕组变压器模型来模拟1000MVA/1050kV三绕组自耦变压器,将特高压变压器参数折算成UMEC模型参数,形成特高压变压器模型。在特高压环境下,分别进行励磁涌流和故障电流仿真,并用于考察应用得最为广泛的2次谐波闭锁的变压器差动保护的动作可靠性。分析表明:当合闸角和剩磁满足一定条件时,特高压变压器三相励磁涌流的2次谐波含量都会在10%以下,即使采用一相制动三相的2次谐波闭锁策略,如果2次谐波门槛值维持在15%~20%,也不能避免差动保护误动;另外,在某些轻微故障的情况下,故障初期故障电流的2次谐波含量成分较高,会使保护动作短暂延迟。  相似文献   

5.
地磁暴导致变压器损毁及电网事故的原因是输电线路的地磁感应电流(geomagnetically induced current,GIC)流经变压器的次生干扰所致,尤其1000 kV特高压变压器的GIC响应机制及大电网中的GIC无功(GIC-Q)效应是制定防御地磁暴灾害的策略迫切需要解决的问题。根据2017年9月8日地磁暴侵害山东昌乐站1000kV特高压变压器高中压侧的无功功率的实测数据,以及山东安丘地磁台的地电场实测数据,推导建立了基于变电站同步相量测量单元(phasor measurement unit,PMU)量测无功数据和地电场数据计算、验证1000 kV特高压单相自耦变压器的GIC-Q扰动的模型,完成了2017年9月8日地磁暴GIC侵害昌乐站1000 kV变压器的GIC-Q扰动的理论计算。对计算结果的分析表明,利用PMU量测无功数据能有效计算分析变压器的GIC-Q扰动,这对基于电网调度运行防御地磁暴电网灾害具有重要的意义。  相似文献   

6.
特高压变压器调压方式的探讨   总被引:8,自引:1,他引:7  
郭慧浩  付锡年 《高电压技术》2006,32(12):112-114
针对特高压变压器的型式等问题进行了探讨分析。特高压变压器在考虑体积、造价及可靠性的情况下,采用单相自耦变压器成为必然。对于特高压中采用的自耦变压器来说,其调压方式有自身特殊的地方。在一般的双绕组变压器中,有载调压装置往往连接在接地的中性点上,这样调压装置的电压等级可比在线端调压时低。而自耦变压器中性点调压则会带来相关调压问题。故自耦变压器调压时,常采用线端调压方式。1000kV自耦变压器因其电压等级的原因,中压线端调压方式很难实现。在对中压线端调压和中性点调压方式,有载和无励磁两种调压方式进行分析比较的基础上,对特高压自耦变压器采用中性点无励磁调压方式的合理性进行了分析;考虑到特高压变压器在系统中的重要性和可靠性,对单独设置调压变压器的必要性进行探讨;对补偿原理进行了说明。  相似文献   

7.
冯顺  曲欣  王毅  焦海龙  张军永  封永才 《电力工程技术》2018,37(1):109-112,121
1000 kV特高压南阳站是我国特高压交流示范工程,特高压变压器是特高压变电站内的重要设备。变电站内2台不同厂家生产的变压器分别采用完全补偿和非完全补偿的调压方式。文中介绍了2台不同原理变压器的绕组连接方式及调压原理,分别建立了调压补偿原理的Simulink仿真模型,并通过变压器电压仿真数据证实了仿真模型的正确性,最后对2台主变的中低压侧电压进行了对比分析,并根据对比结果针对特高压电网建设提出建议,以期为后期特高压建设提供参考。  相似文献   

8.
特高压交流变压器是特高压交流输电工程的核心设备之一,从设计、制造、试验和运输等方面分析了我国1000 kV特高压交流输电工程用变压器的主要特点。介绍了我国特高压交流变压器的工程应用情况,以及在关键原材料、组部件方面取得的突破,特高压变压器标准化方面取得的成果等。随着我国特高压电网的不断发展,特高压变压器技术水平取得了长足进步,重点分析了特高压升压变压器、特高压1000 kV降压220 kV变压器、特高压大容量变压器和解体运输、现场组装式特高压变压器(以下简称解体式特高压变压器)等一系列创新产品的特点及适用场合。工程应用表明:我国特高压变压器技术先进、运行可靠。最后,对特高压变压器的性能提升、组部件国产化及运行维护方面做了展望。  相似文献   

9.
特高压工程用1000kV自耦变压器,因其电压等级高、容量大的特点,其尺寸和重量都很大,造成运输困难和运输费用高。解体运输、现场组装方式是解决运输问题的一个优良方案。随着解体运输特高压变压器的科研攻关,解体运输式1000kV自耦变压器已具备了坚实的技术基础,并已开始工程应用。本技术标准对解体运输式1000kV自耦变压器的技术要求进行规范,填补了国内空白,为指导解体运输式1000 kV自耦变压器的制造、试验、选用等提供重要依据。  相似文献   

10.
杨培宏  冯士伟  亢岚  李亚 《高压电器》2019,55(10):204-209,215
由于特高压自耦变易受直流偏磁电流的影响,随着中国1 000 kV特高压电网逐步投入运行,研究1 000 kV特高压自耦变直流偏磁影响下的无功损耗特性具有重要意义。文中针对我国自主研发的1 000 kV特高压自耦变,首先依据自耦变直流偏磁下励磁电流与磁链的非线性曲线,建立偏磁电流与无功损耗间的数学模型;然后利用厂家所提供的1 000 kV特高压U-I曲线与铭牌参数,在PSCAD平台中建立仿真模型,进行特高压自耦变直流偏磁仿真研究,仿真结果表明,特高压自耦变单相无功损耗与单相直流偏磁电流近似呈线性关系,与理论分析的结论一致;最后根据仿真计算结果获得了自耦变单相无功损耗与单相直流偏磁电流间的比例关系,其中,空载时其比例系数为0.77;额定负载时其比例系数为0.76。  相似文献   

11.
某受端省级电网的特高压交流环网投运后,为多特高压直流分层接入、满功率消纳提供了条件,受端特高压交直流以及1000 kV/500 kV交流电网之间的耦合强度加大。为保证故障后特高压交直流电网的可靠运行,仿真分析了1000 kV特高压环网开断后交直流耦合的电压稳定特性,以及开断后大功率转移至500 kV电网的热稳定特性,分析了此电网结构下电压稳定、热稳定两大运行问题产生的原因;为减小防控措施量,计及直流调制、切负荷等多资源控制手段的灵敏度以及优先级,建立了防控两大运行问题的统一多资源协控优化模型,并提出了基于控制代价的恒步长梯度下降启发式寻优方法来求解得到协控措施。依托实际电网开展了仿真计算,验证了该控制措施能够有效减少防控措施量。  相似文献   

12.
某受端省级电网的特高压交流环网投运后,为多特高压直流分层接入、满功率消纳提供了条件,受端特高压交直流以及1000 kV/500 kV交流电网之间的耦合强度加大。为保证故障后特高压交直流电网的可靠运行,仿真分析了1000 kV特高压环网开断后交直流耦合的电压稳定特性,以及开断后大功率转移至500 kV电网的热稳定特性,分析了此电网结构下电压稳定、热稳定两大运行问题产生的原因;为减小防控措施量,计及直流调制、切负荷等多资源控制手段的灵敏度以及优先级,建立了防控两大运行问题的统一多资源协控优化模型,并提出了基于控制代价的恒步长梯度下降启发式寻优方法来求解得到协控措施。依托实际电网开展了仿真计算,验证了该控制措施能够有效减少防控措施量。  相似文献   

13.
《高电压技术》2007,33(3):36-36
晋东南一荆门1000kV特高压交流试验示范工程主设备已进入实质性研制阶段。其中晋东南变电站的变压器由天威保变电气股份有限公司负责供货。为确保特高压变压器的优质可靠,2007年3月8至10日在保定召开了保变1000MVA/IOOOkV单相自耦变压器第一次技术方案审查会,会议由国家电网公司特高压建设部主持。参会单位有中国电力科学研究院、国网武汉高压研究院、国网交流工程建设有限公司、国网运行有限公司、北京国电华北电力工程有限公司等。[第一段]  相似文献   

14.
2013年华东电网建成并投运的淮南-上海1000kV同塔双回路交流特高压输电线路,开创了"皖电东送"特高压大通道,为世界瞩目。作为"皖电东送"重要配套电源,淮南平圩电厂三期百万机组工程设计输出1000kV电源直接送入特高压电网,因此,世界首台27kV/1000kV电厂特高压变压器应运而生。  相似文献   

15.
500 kV 自耦变压器绕组短路特性分析   总被引:1,自引:0,他引:1  
因自耦变压器具有体积小、效率高、电压变化率低等优点,目前被广泛应用在特高压建设的骨干网架中,但近年变压器短路频发,对电网带来严重影响,而500 kV 等级自耦变压器所占比例很大,因此对500 kV 自耦变压器短路性能展开研究非常重要。为此,基于有限元方法,根据实际500 kV 自耦变压器参数,建立了绕组的场–路耦合模型,验证模型的正确性,并根据绕组实际电气连接特点,考虑低压–公共绕组运行和公共–串联绕组运行两种情况,计算绕组漏磁场和短路电动力并进行对比分析,总结漏磁密及电动力分布相应规律,所得结果可大大提高电网的安全可靠性。  相似文献   

16.
从特高压交流变电站高、中压侧母线等值自阻抗的组成要素出发,分析确定了特高压变电站母线短路电流的影响因素,给定了特高压变电站1 000 kV侧交流电网结构、特高压交流变电站主变压器以及500 kV侧交流电网结构对高压侧和中压侧母线短路电流影响的比重关系。分析结果表明,特高压交流变电站高压侧母线的短路电流主要受1 000 kV侧交流电网结构的影响,而中压侧母线短路电流主要受500 kV侧电网结构和特高压站主变压器的影响。研究结论可为特高压交流站近区电网限流措施的优化提供理论支撑。  相似文献   

17.
1000kV变压器是特高压交流输电工程最关键的设备之一。文章对1000kV变压器3个绕组(高压绕组1000kV,中压绕组500kV,低压绕组110kV)之间的过电压和绝缘配置进行了深入探讨,以期进一步完善特高压系统的绝缘配置、改善特高压变压器抵御过电压的能力和运行工况。推荐了1000kV变压器500kV绕组高性能避雷器的参数,可为降低变压器500kV绕组的绝缘水平、改进特高压变压器的结构设计及提升容量等提供参考。  相似文献   

18.
雅中特高压直流及华中特高压交流环网接入江西电网后,电网特性发生根本性变化,暂态稳定约束成为江西电网运行及控制主要约束条件。深入研究交直流混联背景下江西电网暂态稳定水平及其影响因素具有现实指导意义。基于PSASP程序建立江西电网220 kV以上交流系统及±800 kV分层直流模型,仿真分析了直流系统典型故障、直流近区交流系统典型故障及交流环网对电网暂态稳定的影响。提出了提升暂态稳定水平的控制策略及应对措施,为特高压入赣后电网安全稳定运行奠定了基础。  相似文献   

19.
本文作者以特高压变电站内使用的型号为ODFPS-1000000/1000的自耦变压器为例,通过构建变压器的电磁耦合关系矩阵方程并结合仿真软件分析了特高压变压器调压补偿效果。  相似文献   

20.
准确计算整个电网的地磁感应电流(GIC)无功扰动非常困难。针对超特高压电网广泛采用的单相自耦变压器,提出了一种基于变压器U-I曲线和铭牌参数计算变压器GIC无功损耗的方法,算法利用厂家提供的U-I曲线和铭牌参数建立ψ-i曲线解析模型,求取变压器的GIC无功扰动增量,适用于地磁暴影响评估的工程计算。算例分析结果验证了算法的有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号