共查询到20条相似文献,搜索用时 15 毫秒
1.
以黄精总皂苷得率为评价指标,通过单因素试验对纤维素酶添加量、果胶酶添加量、料液比、酶解pH、酶解温度以及酶解时间进行研究,采用响应面对提取条件进行优化,并以阿卡波糖为阳性对照,探究不同浓度下黄精总皂苷的α-淀粉酶及α-葡萄糖苷酶抑制活性。结果表明,最佳提取条件为:纤维素酶添加量0.4%、果胶酶添加量5.0%、料液比1:16 g/mL、酶解pH为5.0、酶解温度45℃、酶解时间2.0 h,总皂苷得率4.06%。当黄精总皂苷浓度为3.000 mg/mL时,其对α-葡萄糖苷酶最高抑制率可达74%,接近于阿卡波糖(0.5 mg/mL)的82%;当黄精总皂苷浓度为2.000 mg/mL时,其对α-淀粉酶最高抑制率可达82%,超过阿卡波糖(0.5 mg/mL)的80%。本研究使用的复合酶法提高了黄精总皂苷得率并证实了其具有一定的α-葡萄糖苷酶和α-淀粉酶抑制活性。 相似文献
2.
该文以亚麻籽饼粕为原料,通过对8种蛋白酶的筛选,经过单因素试验研究酶添加量、酶解温度、酶解pH值、料液比、酶解时间对亚麻籽饼粕酶解液黄嘌呤氧化酶抑制活性和多肽得率的影响。采用响应面分析法对亚麻籽多肽制备工艺条件进行优化。结果表明,最佳制备工艺优化条件为碱性蛋白酶添加量4 060.17 U/g、酶解pH10.5、酶解温度49.59℃、酶解时间5.18 h、料液比1∶20(g/mL),此条件下酶解多肽得率为67.24%,对黄嘌呤氧化酶抑制活性为60.04%,·OH清除率为90.65%,ABTS+自由基清除率为92.68%。对比常用抗氧化剂,在ABTS+自由基清除能力方面,亚麻籽多肽低于维生素C,在·OH清除能力方面,亚麻籽多肽已接近维生素C水平。通过抗氧化活性和黄嘌呤氧化酶抑制活性试验结果表明,碱性蛋白酶酶解制备的亚麻籽多肽具有较好的抗氧化活性和黄嘌呤氧化酶抑制活性。 相似文献
3.
4.
芡种皮多酚提取物体外抑制α-葡萄糖苷酶和α-淀粉酶活性研究 总被引:1,自引:0,他引:1
通过体外实验研究了芡种皮多酚提取物对α-葡萄糖苷酶和α-淀粉酶活性的影响,并考察了其对α-葡萄糖苷酶和α-淀粉酶的抑制动力学,研究结果显示:芡种皮多酚提取物在体外具有较强的抑制α-葡萄糖苷酶和α-淀粉酶的作用(IC50分别相当于生药浓度0.08 mg/m L和0.30 mg/m L),其抑制作用与浓度之间存在量效关系,二者的抑制类型均为可逆性的竞争性抑制剂。因此,芡种皮具有开发成辅助降糖的保健食品或药品的潜力,有很大的利用价值。 相似文献
5.
目的研究超声波辅助蛋白酶酶解制备抑制葡萄糖苷酶的花生蛋白活性肽工艺方法。方法以冷榨花生蛋白粉为原料,以底物浓度、pH值、加酶量、温度、时间、超声波功率为考察因素,以α-葡萄糖苷酶抑制率为考察指标,在单因素实验基础上,通过响应面的Box-Benhnken实验设计进行工艺优化。结果超声波辅助蛋白酶酶解制备的α-葡萄糖苷酶抑制活性肽复合物的最优工艺条件为底物浓度11.13%、pH值9.45、加酶量1.2%、温度42℃、时间44min、超声波功率1200W;此工艺条件下的α-葡萄糖苷酶抑制率的响应面模型预测值为91.07%,验证实验的抑制率为(88.70±0.63)%,与模型预测值相差2.60%,说明模型与实际情况拟合较好,验证了预测模型的正确性。结论响应面法对超声波辅助蛋白酶解制备抑制α-葡萄糖苷酶的花生蛋白活性肽工艺条件参数优化是可行的,得到的工艺条件具有实际应用价值。 相似文献
6.
7.
为了优化微波辅助酶解制备α-葡萄糖苷酶抑制活性肽工艺,以冷榨花生蛋白粉为原料,以酶解得到的α-葡萄糖苷酶抑制活性肽复合物对α-葡萄糖苷酶的抑制率为考察指标,在单因素实验基础上,通过响应面Box-Benhnken实验设计进行工艺优化。结果表明,最优工艺条件为底物浓度9.77%、加酶量0.94%、温度59 ℃、时间10 min、pH9.0、微波功率1000 W;此工艺条件下的α-葡萄糖苷酶抑制活性肽复合物对α-葡萄糖苷酶的抑制率的响应面模型预测值为84.80%,验证实验的抑制率为90.21%±0.93%,两者的差异值为6.38%。本研究结果为花生α-葡萄糖苷酶抑制活性肽的分离、纯化和应用等研究提供了理论基础。 相似文献
8.
9.
10.
以油茶果壳为原料,在单因素试验基础上,利用响应面分析法优化原花青素的提取工艺,并探究其对α-淀粉酶活性的抑制作用.结果表明,油茶果壳中原花青素的最优提取工艺为:提取时间13 min,乙醇体积分数43%,料液比1:50(g/mL),原花青素的得率为5.58%,接近于预测值5.64%.在此条件下提取的原花青素对α-淀粉酶活... 相似文献
11.
响应面法优化蚕蛹蛋白源α-葡萄糖苷酶抑制肽酶解条件 总被引:1,自引:0,他引:1
以蚕蛹蛋白为原料,使用中性蛋白酶、酸性蛋白酶、胰蛋白酶、胃蛋白酶对其进行酶解,以α-葡萄糖苷酶活性抑制率为评价指标,筛选具有最佳α-葡萄糖苷酶抑制活性的酶品种。通过酶解温度、时间、p H值、酶底比和水底比来选出最佳单因素酶解条件,再通过部分因子试验和中心试验设计的响应面优化法进行酶解条件优化。结果最佳酶解工艺条件:酸性蛋白酶,酶解温度36.4℃,p H 3.79,酶解时间4.6 h,酶底比(质量分数)2%,水底比15 m L/g。验证试验的酶解产物质量浓度在5.0 mg/m L时,α-葡萄糖苷酶抑制率为(65.4±1.3)%。预测值与实际验证值准确性达到97.9%,所得模型具有极好的准确性。 相似文献
12.
13.
以芦丁为标样,香蕉花中黄酮提取量为参考指标,探讨乙醇回流提取香蕉花黄酮工艺,并用α-葡萄糖苷酶对香蕉花乙醇提取物进行活性分析,确定α-葡萄糖苷酶抑制类型。结果表明:用乙醇回流提取香蕉花黄酮的最佳工艺条件为乙醇溶液体积分数60%、料液比1:30(g/mL)、提取温度65℃、提取时间1h,平均黄酮提取量为26.25mg/mL;α-葡萄糖苷酶对香蕉花乙醇提取物有较强的酶抑制活性,抑制率可达到88.56%;α-葡萄糖苷酶抑制剂的类型是竞争性抑制,α-葡萄糖苷酶Km=674.074μg/mL。 相似文献
14.
以银杏为原料,研究α-淀粉酶水解制备银杏抗性淀粉工艺。以银杏抗性淀粉得率为指标,探讨α-淀粉酶用量、pH、酶解温度、酶解时间、高压处理温度、高压处理时间、老化温度和老化时间对银杏抗性淀粉得率的影响。结果表明,响应面法优化α-淀粉酶水解制备银杏抗性淀粉的最佳工艺条件:加酶量为8.0U/g,pH为5.8,酶解温度为88.7℃,酶解时间为19.3 min,高压处理温度为120℃,高压处理时间为35 min,老化温度为3℃,老化时间为24 h,在该工艺条件下银杏抗性淀粉得率可达24.12%。为银杏抗性淀粉的开发提供参考。 相似文献
15.
比较研究枇杷不同药用部位(根、茎、叶、花、果肉、种子)醇提取物对α-葡萄糖苷酶和α-淀粉酶抑制活性,并探究最强活性部位及其总黄酮的酶促反应动力学特征。采用95%乙醇超声提取制备枇杷不同药用部位醇提取物,超声辅助浸提并经AB-8大孔树脂制备总黄酮,利用紫外光谱法测定α-葡萄糖苷酶和α-淀粉酶抑制活性,通过酶促动力学方法与Lineweaver-Burk曲线推断酶抑制类型。结果表明,枇杷不同药用部位醇提取物均具有一定的α-葡萄糖苷酶和α-淀粉酶抑制活性,α-葡萄糖苷酶抑制活性强弱依次为花>茎>根>叶>果肉>种子,α-淀粉酶抑制活性强弱依次为根>茎>花>叶>果肉>种子。枇杷花醇提取物、枇杷花总黄酮对α-葡萄糖苷酶抑制活性半抑制浓度(half inhibitory concentration, IC50)值分别为(4.65±0.35)、(0.017 4±0.003 5) g/L,均为可逆非竞争性抑制类型;对α-淀粉酶抑制活性IC50值分别为(14.41±0.59)、(1.57±0.03)g/L... 相似文献
16.
17.
以亚麻籽为原料,采用响应面法对亚麻籽油的超声酶解提取工艺进行优化。亚麻籽经脱胶后,探究了料液比、加酶量、酶解pH、超声功率、超声时间、提取温度对亚麻籽油得率的影响,根据单因素实验设计五因素三水平响应面分析实验,确定响应面模型。根据模型回归分析得到超声酶解提取亚麻籽油的最优工艺条件为:料液比1∶10,加酶量0.10 g,酶解pH 10,超声时间40 min,提取温度50℃,在该条件下亚麻籽油实际得率达到(30.52±0.04)%。超声辅助酶法提取亚麻籽油的工艺条件简便、快速,得率高,可用于实际生产中。 相似文献
18.
响应面法优化亚麻籽油提取工艺 总被引:1,自引:0,他引:1
为提高亚麻籽油的提取率,采用响应面法优化亚麻籽油的提取工艺条件。选取提取温度、提取时间、液固比、搅拌速率作为影响因素,以正己烷为溶剂、亚麻籽油提取率为指标,在单因素试验的基础上,通过4因素3水平Box-Behnken试验,建立亚麻籽油提取率的二次多项式回归方程,经响应面回归分析得到优化组合条件。结果表明:最佳提取工艺条件为提取温度56℃、提取时间2.2h、液固比8:1(mL/g)、搅拌速度310r/min。在此条件下亚麻籽油提取率为98.12%,与理论值98.28%接近。结论:所得提取条件可靠。 相似文献
19.
以芝麻饼粕为原料酶法制备具有降血压活性的血管紧张素转化酶(ACE)抑制肽,在单因素试验基础上进行酶解条件的响应面优化,结果显示芝麻饼粕ACE抑制肽酶法制备的最优条件为p H 8.88,酶解温度46℃,底物质量浓度85 mg/m L,酶解时间24 min。高效液相色谱测得ACE抑制肽的IC50值3.03 mg/m L,进一步经过膜分离,发现经过碱性蛋白酶酶解后,芝麻多肽从平均相对分子质量8 949.62降低到1 721.90,其中酶解液中相对相对分子质量大于10 000的物质仅占1.65%,小于2 000的物质占73.83%,为进一步研究芝麻饼粕ACE抑制肽的制备提供参考。 相似文献
20.
利用α-葡萄糖苷酶抑制剂阻止碳水化合物在体内的消化吸收,是治疗糖尿病的1种有效方式。采用体外α-葡萄糖苷酶抑制模型,以阿卡波糖为阳性对照,对香蕉花中不同极性组分进行活性评价。结果表明:各组分对α-葡萄糖苷酶均有一定抑制活性,其中石油醚部分对-葡萄糖苷酶的抑制作用最强,IC50达788.36 g/mL,低于对照阿卡波糖(IC50=999.31μg/mL),乙酸乙酯(IC50=1 877.77μg/mL)和正丁醇部分(IC50=2 117.78μg/mL)活性次之。该提取物最高活性部分对α-葡萄糖苷酶的抑制类型为竞争性抑制,根据Lineweaver-Burk方程求得Ki值为250.70μg/mL;对石油醚部分进行GC-MS分析,鉴定出29种化合物,主要化学成分为有机酸类(71.58%)、酯类(13.01%)、胺类(5.88%)、醛类(1.52%)、酮类(0.42%)化合物。 相似文献