首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
朱坤  付青 《电源技术》2023,(1):103-107
光伏功率预测对电网调度具有重要意义。针对光伏功率数据具有较强波动性和不稳定性的特点,提出了一种基于集成经验模态分解(ensemble empirical mode decomposition, EEMD)、K均值聚类算法(Kmeans clustering algorithm, Kmeans)和蚁狮优化(ant lion optimization, ALO)算法优化的长短期记忆神经网络(long short-term memory network, LSTM)的光伏功率组合预测模型。对光伏功率数据进行EEMD分解,得到相应的本征模态分量(intrinsic mode function,IMF)和残差项;引入Kmeans聚类对分解后的序列重构,降低序列复杂度和分量数量;将重构后的子序列输入经ALO优化的LSTM模型进行预测,并将各序列预测结果简单加和作为最终预测值。与目前应用较广泛的EEMD-LSTM模型对比,表明EEMD-Kmeans-LSTM和EEMD-Kmeans-ALO-LSTM模型的预测精度均得到一定程度的提高。  相似文献   

2.
随着国家对可再生能源占比要求的不断提高,新光伏电站的建设需求随之增加.为解决新建光伏电站历史数据不足问题,建立基于特征迁移学习的光伏功率短期预测模型.模型采用日辐照度特征、光伏电池温度和t-SNE算法对气象数据进行特征提取,构建具有泛化能力的高识别度预测模型特征.根据迁移学习理论,将长期运行的光伏电站历史数据用于GRU...  相似文献   

3.
臧冬  尹杭  刘洋 《电气开关》2020,(3):49-53
光伏发电技术因其清洁无污染、安装便利、维护成本低和使用效率高等优势近年来获得了快速的发展,但是光伏输出功率具有明显的随机性和不确定性,当其大规模接入电网后其波动特性表现的更为突出,给电网带来巨大冲击的同时降低了电网运行的可靠性,增添了电网调度运行管理的成本与难度。针对此问题本文提出一种基于粒子群算法和神经网络算法的组合预测方法对光伏发电功率进行短期预测,对传统神经网络功率预测算法寻优性能欠佳的问题进行改善,利用粒子群算法对输入样本进行合理优化,同时利用变步长的动量梯度法对神经学习因子进行不断修正,形成一种组合的功率预测方法用于光伏功率预测。仿真结果表明本文预测模型在日类型天气为晴朗天气时的预测结果最好,精度提升相比传统方法来说13%左右。  相似文献   

4.
为了提高短期光伏发电功率预测的精度,提出了一种基于白冠鸡优化算法(COOT)优化支持向量机(SVM)的短期光伏发电功率预测模型。首先,分别选取某光伏电站在2017年4月和7月的前21天数据进行仿真分析,计算光伏输出功率和每一个气象因素之间的皮尔逊相关系数;然后,依据皮尔逊相关系数选择太阳总辐射强度、太阳散射辐射强度、太阳直射辐射强度、组件温度和环境温度5个气象因素作为预测模型的输入数据,光伏电站的发电功率作为输出数据。通过与BP和SVM预测模型进行仿真对比可知,对于4月和7月的数据来说,COOT-SVM预测模型的均方根误差、均方误差和平均绝对误差均比BP和SVM预测模型小。因此,所提COOT-SVM预测模型可有效提高短期光伏发电功率的预测精度,具有较高的工程应用价值。  相似文献   

5.
光伏发电功率预测是可持续电力系统设计,能源转换管理和智能电网建设领域的重要主题。精准的光伏发电功率预测是电网日常调度管理与安全稳定运行的关键。本文提出了一种基于自适应Kmeans和长短期记忆(LSTM)的短期光伏发电功率预测模型。根据短期光伏发电特性,选取了预测模型的初始训练集。采用自适应Kmeans对初始训练集以及预测日的光伏发电功率进行聚类。在各类别的初始训练集数据上分别训练LSTM,结合训练完成的LSTM进行发电功率的预测。最后,考虑三种典型天气类型,采用所提方法进行仿真分析。结果表明,与其他三种方法相比,本文提出的方法的精度有了明显提升,误差更小。  相似文献   

6.
郑雨 《电工技术》2024,6(6):32-35
针对传统光伏功率超短期预测算法精度不高的问题,提出一种基于改进变分模态分解的长短期记忆网络的光伏功率预测模型。首先利用Pearson相关系数分析光伏功率影响因素,其次利用基于蚁群算法优化的变分模态分解对光伏功率序列进行分解,并将各模态分量级气象因素作为长短期记忆网络的输入,得到预测功率。仿真结果表明,与BPNN、LSTM模型相比,所提出的预测模型具有较高的预测精度,可为光伏电站功率预测提供参考。  相似文献   

7.
为进一步提高光伏发电功率预测的准确度,从而将思维进化算法(MEA)和Elman神经网络相结合,通过MEA优化Elman神经网络权值和阈值,克服了Elman神经网络易陷入局部最优等缺陷。根据光伏发电系统的历史发电数据和气象数据,建立MEA-Elman神经网络预测模型并对其测试。结果表明,与原有光伏预测模型比较,该预测模型能够有效提高光伏预测的有效性和精确性。  相似文献   

8.
对光伏发电功率进行准确预测,可减弱其并入电网的波动性,有利于电网对新能源发电的调度。基于主成分分析法和局部均值分解相结合的鲸鱼优化算法,构造优化后的极限学习机模型,并使用该模型对光伏发电短期功率进行预测。先用主成分分析法对影响光伏发电功率的因素进行筛选,并使用局部均值分解对选取的主要影响因素及发电功率序列数据进行分解;然后基于子序列使用鲸鱼优化建立极限学习机模型;最后将各序列短期预测结果叠加获得光伏发电短期功率预测结果。通过仿真验证及对比分析,说明该预测方法具有较高的预测精准度。  相似文献   

9.
光伏功率预测技术   总被引:17,自引:7,他引:10  
光伏功率预测是提高光伏电站控制、调度性能,保障高比率光伏发电接入的电网安全稳定运行的基础性关键技术。国内光伏功率预测技术研究和工程应用尚处于起步阶段,理清其技术脉络和关键问题尤其迫切。文中对光伏功率预测基本技术原理和关键问题进行了全面综述,首先介绍其基本原理和预测模式,然后总结了超短期和短期预测的主要技术要点,并着重对提升预测精度的相关研究进行评述,最后结合中国光伏功率预测发展现状,提出了值得研究和关注的光伏功率预测关键问题。  相似文献   

10.
光伏电站发电功率的间歇性与波动性对电网安全、稳定、经济运行的影响日益明显,因此需要不断提高光伏发电功率预测准确率,为电网灵活调度与规划提供准确信息。首先,介绍了短期光伏发电功率的预测算法、特征方程、预测流程以及评价指标。接着,通过SHAP方法对训练集所构造特征进行分析筛选,使用CatBoost算法进行训练。最后,通过与使用相同特征的其他机器学习算法模型预测精度的对比,表明所提方法有效提高了预测性能,证实了基于CatBoost算法、融合多维特征的模型在光伏功率预测中的优势。  相似文献   

11.
由于光伏功率波动特征与天气类型紧密相关,且光伏功率短期预测存在功率波动过程预测精度低、气象因素与功率波动过程相关性弱的问题,文中提出了一种基于天气分型的短期光伏功率组合预测方法。首先,基于气象因素与光伏功率波动特征的关联性,将天气过程划分为5种类型,并基于变分模态分解算法将光伏功率分解为类晴空过程和波动过程。然后,利用Granger因果关系算法筛选出与各天气类型下光伏功率波动过程密切相关的关键气象因子。最后,建立基于天气分型的短期光伏功率组合预测模型。模型充分考虑了深度学习算法的特异性,对光伏功率类晴空过程与各天气类型下的光伏功率波动过程进行分类预测。仿真结果表明,文中所提出的短期光伏功率预测方法能够显著提升短期光伏功率预测的精度。  相似文献   

12.
针对现有的光伏功率超短期预测方法难以得到所需复杂的气象数据,且光伏时间序列具有混沌特性,将小波去噪后的光伏电站的历史功率数据利用C-C法挖掘数据自身所包含的各影响因子.利用鸡群算法(CSO)对小波神经网络(WNN)的初值进行寻优,来提升WNN的预测性能.由于径向基函数(RBF)神经网络预测模型处理非线性输入输出关系具有...  相似文献   

13.
《电网技术》2021,45(4):1258-1264
光伏发电功率超短期预测对减小光伏并网对电网冲击及维持电网安全运行具有重要意义。提出一种基于数字孪生的光伏发电功率超短期预测机制,通过构建数字孪生体进行实时、高精度的光伏功率预测。首先根据GA-BP神经网络(geneticalgorithm-backpropagationneuralnetwork)构建光伏发电功率预测虚拟模型,并通过多维度的传感器采集光伏电池以及周围环境的各项孪生数据,同时更新历史数据库。然后以采集到的孪生数据为基础进行功率预测并得到初步预测结果。最后通过相似气象搜索,得到相似情况下的实际功率值和当时的预测功率,进而修正初步预测结果,得到最终预测功率。仿真算例结果表明,所提方法能有效提高光伏发电输出功率超短期预测精度。  相似文献   

14.
提升精细化的光伏预测技术对电力系统的实时调度运行至关重要。它不仅依赖于预测模型的优劣,还依赖于训练样本日与预测日的相似程度。提出一种基于MIE-LSTM的短期光伏功率预测方法。在建立基于互信息熵(Mutual Information Entropy, MIE)的相关性衡量指标基础上,计算出光伏功率与各气象因素间的互信息熵,从而对高维气象数据进行降维处理。然后,利用历史日与预测日多维气象因素间的加权互信息熵筛选出相似日样本。最后,通过长短期记忆(Long-short Term Memory, LSTM)神经网络预测模型训练并建立气象因素与光伏出力之间的映射关系。通过对某实测光伏电站不同天气类型下的发电功率进行预测分析,验证了新方法能够达到理想的预测精度。  相似文献   

15.
以进一步提高光伏输出功率短期预测的准确性和可靠性为目标,针对传统Elman神经网络权值和阈值盲目随机的缺点以及光伏输出功率信号波动性和非平稳性的特点,提出一种基于变分模态分解(VMD)和灰狼优化算法(GWO)优化Elman神经网络的光伏输出功率短期预测模型。首先,使用K-means算法对原始数据按天气类型进行聚类;然后,使用VMD对每一类型天气光伏输出功率数据进行分解,分别将各分解子序列输入经GWO优化的Elman神经网络进行光伏输出功率预测;最后,将各预测结果进行叠加。实例证明:该模型的预测精度有所提升。  相似文献   

16.
为了增强光伏并网的稳定性,提高光伏发电功率预测精度,提出一种基于相似日聚类、群分解(swarm decomposition, SWD)和MBI-PBI-ResNet深度学习网络模型的光伏发电功率超短期预测方法。首先,使用快速傅里叶变换(fast fourier transform, FFT)提取太阳辐照度的期望频率,将其作为聚类特征向量,并根据此聚类特征向量采用自适应仿射传播聚类(adaptive affinity propagation clustering, AdAP)实现相似日聚类。其次,对每一类相似日分别使用群分解算法进行分解,以提取原始数据的多尺度波动规律特征。最后,利用MBI-PBI-ResNet来实现对天气环境多变量关联影响下的时序特征挖掘以及对多尺度分量的局部波形空间特征和长时间依赖时序特征的同时挖掘,并对不同类型特征进行综合集成来实现光伏发电功率超短期预测。研究结果表明:所提方法在光伏发电功率超短期预测领域相较于其他深度学习方法预测精度提高了3%以上,说明此方法在光伏发电功率超短期预测领域具有较高的预测精度和较强的泛化能力。  相似文献   

17.
杨荔强  崔双喜 《电源技术》2024,48(6):1154-1159
为提高光伏功率的短期预测精度,提出一种变分模态分解(VMD)与麻雀搜索算法(SSA)优化混合核极限学习机(HKELM)相结合的短期光伏发电功率预测模型。运用皮尔逊相关系数(PCC)选取与光伏发电功率相关性较强的气象因素作为预测模型的输入变量;以平方欧氏距离作为衡量样本相似性的依据,筛选出不同天气类型下的最优训练样本。为降低数据的非平稳性,利用VMD将原始光伏功率数据分解为一系列不同带宽的模态分量,对各模态分量分别建立HKELM模型,通过引入SSA算法对HKELM模型进行参数寻优。将各模态分量的预测结果进行求和重构,得到光伏功率预测结果。仿真结果表明,相比于反向传播神经网络(BPNN)、极限学习机(ELM)、核极限学习机(VMDKELM)和混合核极限学习机(VMD-HKELM)模型,VMD-SSA-HKELM模型具有更高的预测精度,验证了本文模型的精确性和有效性。  相似文献   

18.
针对光伏发电的间歇性和波动性问题,采用基于BP-ANN建立光伏发电系统输出功率超短期预测模型,利用输出功率的历史值、过往及预测日气象信息,对输出功率进行预测,并提出适用的预测流程及预测误差评估方法。实际应用以及与实时监测数据对比,表明该方法方法误差较小,合格率较高,能够满足应用的要求。  相似文献   

19.
介绍光伏功率预测模型输入数据的相关性及数据预处理方法,研究不同短期光伏功率预测技术的基本原理和预测模型。  相似文献   

20.
准确预测光伏发电功率是保障含分布式电网平稳运行的关键环节。为提升反向传播神经网络(BPNN)功率预测精度,提出一种基于Logistic混沌映射的麻雀搜索算法(LCSSA)以改进BPNN的预测模型。利用相关性分析确定光伏发电功率的影响因素,并引入与天气类型密切相关的晴空指数作为选取相似日的气象因素;利用欧氏距离和马氏距离组合加权法选取训练集;建立LCSSA-BPNN功率预测模型,利用实测数据对比分析所提LCSSA-BPNN模型与SSA-BPNN、BPNN模型的预测精度。结果表明:在晴天、阴天、雨天3种情况下,LCSSA-BPNN模型预测值的平均相对误差率分别为9.52%、10.52%和11.56%,均优于其他对比模型,说明LCSSA-BPNN预测模型具有更好的适应性和预测性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号