首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
The aim of this paper is to develop an effective fuzzy c-means (FCM) technique for segmentation of Magnetic Resonance Images (MRI) which is seriously affected by intensity inhomogeneities that are created by radio-frequency coils. The weighted bias field information is employed in this work to deal the intensity inhomogeneities during the segmentation of MRI. In order to segment the general shaped MRI dataset which is corrupted by intensity inhomogeneities and other artifacts, the effective objective function of fuzzy c-means is constructed by replacing the Euclidean distance with kernel-induced distance. In this paper, the initial cluster centers are assigned using the proposed center initialization algorithm for executing the effective FCM iteratively. To assess the performance of proposed method in comparison with other existed methods, experiments are performed on synthetic image, real breast and brain MRIs. The clustering results are validated using Silhouette accuracy index. The experimental results demonstrate that our proposed method is a promising technique for effective segmentation of medical images.  相似文献   

2.
Intensity inhomogeneity, noise and partial volume (PV) effect render a challenging task for segmentation of brain magnetic resonance (MR) images. Most of the current MR image segmentation methods focus on only one or two of the effects listed above. In this paper, a framework with modified fast fuzzy c-means for brain MR images segmentation is proposed to take all these effects into account simultaneously and improve the accuracy of image segmentations. Firstly, we propose a new automated method to determine the initial values of the centroids. Secondly, an adaptive method to incorporate the local spatial continuity is proposed to overcome the noise effectively and prevent the edge from blurring. The intensity inhomogeneity is estimated by a linear combination of a set of basis functions. Meanwhile, a regularization term is added to reduce the iteration steps and accelerate the algorithm. The weights of the regularization terms are all automatically computed to avoid the manually tuned parameter. Synthetic and real MR images are used to test the proposed framework. Improved performance of the proposed algorithm is observed where the intensity inhomogeneity, noise and PV effect are commonly encountered. The experimental results show that the proposed method has stronger anti-noise property and higher segmentation precision than other reported FCM-based techniques.  相似文献   

3.
This paper introduces a new method of clustering algorithm based on interval-valued intuitionistic fuzzy sets (IVIFSs) generated from intuitionistic fuzzy sets to analyze tumor in magnetic resonance (MR) images by reducing time complexity and errors. Based on fuzzy clustering, during the segmentation process one can consider numerous cases of uncertainty involving in membership function, distance measure, fuzzifier, and so on. Due to poor illumination of medical images, uncertainty emerges in their gray levels. This paper concentrates on uncertainty in the allotment of values to the membership function of the uncertain pixels. Proposed method initially pre-processes the brain MR images to remove noise, standardize intensity, and extract brain region. Subsequently IVIFSs are constructed to utilize in the clustering algorithm. Results are compared with the segmented images obtained using histogram thresholding, k-means, fuzzy c-means, intuitionistic fuzzy c-means, and interval type-2 fuzzy c-means algorithms and it has been proven that the proposed method is more effective.  相似文献   

4.
模糊C均值聚类是一种有效的图像分割方法, 但存在因忽略空间上下文信息和结构信息而易为噪声所干扰的现象. 为此提出了DCT子空间的邻域加权模糊C均值聚类方法. 该方法首先结合分块的思想, 对图像块进行离散余弦变换(discrete cosine transform,DCT), 建立了一个基于图像块局部信息的相似性度量模型; 然后定义目标函数中的欧式距离为邻域加权距离; 最后将该方法应用于加噪的人工合成图像、自然图像和MR图像. 实验结果表明, 该方法能够获得较好的分割效果, 同时具有较强的抗噪性.  相似文献   

5.
In this paper, we propose a robust region-based active contour model driven by fuzzy c-means energy that draws upon the clustering intensity information for fast image segmentation. The main idea of fuzzy c-means energy is to quickly compute the two types of cluster center functions for all points in image domain by fuzzy c-means algorithm locally with a proper preprocessing procedure before the curve starts to evolve. The time-consuming local fitting functions in traditional models are substituted with these two functions. Furthermore, a sign function and a Gaussian filtering function are utilized to replace the penalty term and the length term in most models, respectively. Experiments on several synthetic and real images have proved that the proposed model can segment images with intensity inhomogeneity efficiently and precisely. Moreover, the proposed model has a good robustness on initial contour, parameters and different kinds of noise.  相似文献   

6.
As an effective image segmentation method, the standard fuzzy c-means (FCM) clustering algorithm is very sensitive to noise in images. Several modified FCM algorithms, using local spatial information, can overcome this problem to some degree. However, when the noise level in the image is high, these algorithms still cannot obtain satisfactory segmentation performance. In this paper, we introduce a non local spatial constraint term into the objective function of FCM and propose a fuzzy cmeans clustering algorithm with non local spatial information (FCM_NLS). FCM_NLS can deal more effectively with the image noise and preserve geometrical edges in the image. Performance evaluation experiments on synthetic and real images, especially magnetic resonance (MR) images, show that FCM_NLS is more robust than both the standard FCM and the modified FCM algorithms using local spatial information for noisy image segmentation.  相似文献   

7.
冯飞  刘培学  李丽  陈玉杰 《计算机科学》2018,45(Z6):252-254
医学图像由于具有复杂性,在对其进行图像分割时存在很大的不确定性,为了提高模糊c均值聚类算法(FCM)在处理医学图像分割时的性能,提出一种新的混合方法进行图像分割。利用FCM算法将图像像素分成均匀的区域,融合引力搜索算法,将改进的引力搜索算法纳入模糊c均值聚类算法中,以找到最优聚类中心,使模糊c均值聚类的适应度函数值最小,从而提高分割效果。实验结果表明,相对于传统的聚类算法,所提算法在分割复杂的医学图像方面更具有效性。  相似文献   

8.
Fuzzy c-means clustering with spatial constraints is considered as suitable algorithm for data clustering or data analyzing. But FCM has still lacks enough robustness to employ with noise data, because of its Euclidean distance measure objective function for finding the relationship between the objects. It can only be effective in clustering ‘spherical’ clusters, and it may not give reasonable clustering results for “non-compactly filled” spherical data such as “annular-shaped” data. This paper realized the drawbacks of the general fuzzy c-mean algorithm and it tries to introduce an extended Gaussian version of fuzzy C-means by replacing the Euclidean distance in the original object function of FCM. Firstly, this paper proposes initial kernel version of fuzzy c-means to aim at simplifying its computation and then extended it to extended Gaussian kernel version of fuzzy c-means. It derives an effective method to construct the membership matrix for objects, and it derives a robust method for updating centers from extended Gaussian version of fuzzy C-means. Furthermore, this paper proposes a new prototypes learning method and it obtains initial cluster centers using new mathematical initialization centers for the new effective objective function of fuzzy c-means, so that this paper tries to minimize the iteration of algorithms to obtain more accurate result. Initial experiment will be done with an artificially generated data to show how effectively the new proposed Gaussian version of fuzzy C-means works in obtaining clusters, and then the proposed methods can be implemented to cluster the Wisconsin breast cancer database into two clusters for the classes benign and malignant. To show the effective performance of proposed fuzzy c-means with new initialization of centers of clusters, this work compares the results with results of recent fuzzy c-means algorithm; in addition, it uses Silhouette method to validate the obtained clusters from breast cancer datasets.  相似文献   

9.
In quantitative brain image analysis, accurate brain tissue segmentation from brain magnetic resonance image (MRI) is a critical step. It is considered to be the most important and difficult issue in the field of medical image processing. The quality of MR images is influenced by partial volume effect, noise, and intensity inhomogeneity, which render the segmentation task extremely challenging. We present a novel fuzzy c-means algorithm (RCLFCM) for segmentation and bias field correction of brain MR images. We employ a new gray-difference coefficient and design a new impact factor to measure the effect of neighbor pixels, so that the robustness of anti-noise can be enhanced. Moreover, we redefine the objective function of FCM (fuzzy c-means) by adding the bias field estimation model to overcome the intensity inhomogeneity in the image and segment the brain MR images simultaneously. We also construct a new spatial function by combining pixel gray value dissimilarity with its membership, and make full use of the space information between pixels to update the membership. Compared with other state-of-the-art approaches by using similarity accuracy on synthetic MR images with different levels of noise and intensity inhomogeneity, the proposed algorithm generates the results with high accuracy and robustness to noise.  相似文献   

10.
Effective fuzzy c-means clustering algorithms for data clustering problems   总被引:3,自引:0,他引:3  
Clustering is a well known technique in identifying intrinsic structures and find out useful information from large amount of data. One of the most extensively used clustering techniques is the fuzzy c-means algorithm. However, computational task becomes a problem in standard objective function of fuzzy c-means due to large amount of data, measurement uncertainty in data objects. Further, the fuzzy c-means suffer to set the optimal parameters for the clustering method. Hence the goal of this paper is to produce an alternative generalization of FCM clustering techniques in order to deal with the more complicated data; called quadratic entropy based fuzzy c-means. This paper is dealing with the effective quadratic entropy fuzzy c-means using the combination of regularization function, quadratic terms, mean distance functions, and kernel distance functions. It gives a complete framework of quadratic entropy approaching for constructing effective quadratic entropy based fuzzy clustering algorithms. This paper establishes an effective way of estimating memberships and updating centers by minimizing the proposed objective functions. In order to reduce the number iterations of proposed techniques this article proposes a new algorithm to initialize the cluster centers.In order to obtain the cluster validity and choosing the number of clusters in using proposed techniques, we use silhouette method. First time, this paper segments the synthetic control chart time series directly using our proposed methods for examining the performance of methods and it shows that the proposed clustering techniques have advantages over the existing standard FCM and very recent ClusterM-k-NN in segmenting synthetic control chart time series.  相似文献   

11.
The goal of this work is to segment the breast into different regions, each corresponding to a different tissue, and to identify tissue regions judged abnormal, based on the signal enhancement-time information. There are a number of problems that render this task complex. Breast MRI segmentation based on the differential enhancement of image intensities can assist the clinician to detect suspicious regions. In this paper, we propose an effective segmentation method for breast contrast-enhanced MRI (ce-MRI). The segmentation method is developed based on standard fuzzy clustering techniques proposed by Bezedek. By minimizing the proposed effective objective function, this paper obtains an effective way of predicting membership grades for objects and new method to update centers. Experiments will be done with a synthetic image to show how effectively the new proposed effective fuzzy c-means (FCM) works in obtaining clusters. To show the performance of proposed FCM, this work compares the results with results of standard FCM algorithm on same synthetic image. Then the proposed method was applied to segment the clinical ce-MR images with the help of computer programing language and results have been shown visually.  相似文献   

12.
Automated segmentation of images has been considered an important intermediate processing task to extract semantic meaning from pixels. In general, the fuzzy c-means approach (FCM) is highly effective for image segmentation. But for the conventional FCM image segmentation algorithm, cluster assignment is based solely on the distribution of pixel attributes in the feature space, and the spatial distribution of pixels in an image is not taken into consideration. In this paper, we present a novel FCM image segmentation scheme by utilizing local contextual information and the high inter-pixel correlation inherent. Firstly, a local spatial similarity measure model is established, and the initial clustering center and initial membership are determined adaptively based on local spatial similarity measure model. Secondly, the fuzzy membership function is modified according to the high inter-pixel correlation inherent. Finally, the image is segmented by using the modified FCM algorithm. Experimental results showed the proposed method achieves competitive segmentation results compared to other FCM-based methods, and is in general faster.  相似文献   

13.
In this paper, an image segmentation method is proposed that integrates fuzzy 2-partition into Yen’s maximum correlation thresholding method. A fuzzy 2-partition of the image is obtained by transforming the image into fuzzy domain by means of two parameterized membership functions. Fuzzy correlation is defined to measure the appropriateness of the fuzzy 2-partition. An ideal threshold is calculated from the optimal membership functions’ parameters, which make the corresponding fuzzy 2-partition have maximum fuzzy correlation. In the process of searching the optimal parameters of membership functions, a fast recursive algorithm is presented in order to reduce the computation complexity. Experimental results on synthetic image, brain magnetic resonance (MR) images and casting images show that the proposed method has a satisfactory performance.  相似文献   

14.
This article describes a multiobjective spatial fuzzy clustering algorithm for image segmentation. To obtain satisfactory segmentation performance for noisy images, the proposed method introduces the non-local spatial information derived from the image into fitness functions which respectively consider the global fuzzy compactness and fuzzy separation among the clusters. After producing the set of non-dominated solutions, the final clustering solution is chosen by a cluster validity index utilizing the non-local spatial information. Moreover, to automatically evolve the number of clusters in the proposed method, a real-coded variable string length technique is used to encode the cluster centers in the chromosomes. The proposed method is applied to synthetic and real images contaminated by noise and compared with k-means, fuzzy c-means, two fuzzy c-means clustering algorithms with spatial information and a multiobjective variable string length genetic fuzzy clustering algorithm. The experimental results show that the proposed method behaves well in evolving the number of clusters and obtaining satisfactory performance on noisy image segmentation.  相似文献   

15.
结合MRF能量和模糊速度的乳腺癌图像分割方法   总被引:1,自引:0,他引:1  
乳腺癌灶的精确分割是乳腺癌计算机辅助诊断的重要前提. 在动态对比增强核磁共振成像(Dynamic contrast-enhanced magnetic resonance imaging, DCE-MRI)的图像中, 乳腺癌灶具有对比度低、边界模糊及亮度不均匀等特点, 传统的活动轮廓模型方法很难取得准确的分割结果. 本文提出一种结合马尔科夫随机场(Markov random field, MRF)能量和模糊速度函数的活动轮廓模型的半自动分割方法来完成乳腺癌灶的分割, 相对于专业医生的手动分割, 本文方法具有速度快、可重复性高和分割结果相对客观等优点. 首先, 计算乳腺DCE-MRI图像的MRF能量, 以增强目标区域与周围背景的差异. 其次, 在能量图中计算每个像素点的后验概率, 建立基于后验概率驱动的活动轮廓模型区域项. 最后, 结合Gabor纹理特征、DCE-MRI时域特征和灰度特征构建模糊速度函数, 将其引入到活动轮廓模型中作为边缘检测项. 在乳腺癌灶边界处, 该速度函数趋向于零, 活动轮廓曲线停止演变, 完成对乳腺癌灶的分割. 实验结果表明, 所提出的方法有助于乳腺癌灶在DCE-MRI图像中的准确分割.  相似文献   

16.
The generalized fuzzy c-means clustering algorithm with improved fuzzy partition (GFCM) is a novel modified version of the fuzzy c-means clustering algorithm (FCM). GFCM under appropriate parameters can converge more rapidly than FCM. However, it is found that GFCM is sensitive to noise in gray images. In order to overcome GFCM?s sensitivity to noise in the image, a kernel version of GFCM with spatial information is proposed. In this method, first a term about the spatial constraints derived from the image is introduced into the objective function of GFCM, and then the kernel induced distance is adopted to substitute the Euclidean distance in the new objective function. Experimental results show that the proposed method behaves well in segmentation performance and convergence speed for gray images corrupted by noise.  相似文献   

17.
This paper presents an adaptive spatial information-theoretic fuzzy clustering algorithm to improve the robustness of the conventional fuzzy c-means (FCM) clustering algorithms for image segmentation. This is achieved through the incorporation of information-theoretic framework into the FCM-type algorithms. By combining these two concepts and modifying the objective function of the FCM algorithm, we are able to solve the problems of sensitivity to noisy data and the lack of spatial information, and improve the image segmentation results. The experimental results have shown that this robust clustering algorithm is useful for MRI brain image segmentation and it yields better segmentation results when compared to the conventional FCM approach.  相似文献   

18.
王海军  柳明 《计算机应用》2013,33(8):2355-2358
基于一般化的模糊划分GIFP-FCM聚类算法是模糊C均值算法(FCM)的一种改进算法,一定程度上克服了FCM算法对噪声的敏感性,但由于其没有考虑图像的邻域信息,对含有较大噪声的图像分割效果不理想。为此,提出将局部隶属度和局部邻域信息等引入到GIFP-FCM算法的目标函数中,通过重新计算每个像素的局部隶属度和邻域信息,较好地克服了噪声影响。利用该算法对合成图像、脑图分割的实验结果表明,对于含有高斯噪声、椒盐噪声和混合噪声的图像,新算法得到的划分系数值最大,划分熵最小,是一种去噪效果较好的图像分割算法。  相似文献   

19.

Objective

Accurate brain tissue segmentation from magnetic resonance (MR) images is an essential step in quantitative brain image analysis, and hence has attracted extensive research attention. However, due to the existence of noise and intensity inhomogeneity in brain MR images, many segmentation algorithms suffer from limited robustness to outliers, over-smoothness for segmentations and limited segmentation accuracy for image details. To further improve the accuracy for brain MR image segmentation, a robust spatially constrained fuzzy c-means (RSCFCM) algorithm is proposed in this paper.

Method

Firstly, a novel spatial factor is proposed to overcome the impact of noise in the images. By incorporating the spatial information amongst neighborhood pixels, the proposed spatial factor is constructed based on the posterior probabilities and prior probabilities, and takes the spatial direction into account. It plays a role as linear filters for smoothing and restoring images corrupted by noise. Therefore, the proposed spatial factor is fast and easy to implement, and can preserve more details. Secondly, the negative log-posterior is utilized as dissimilarity function by taking the prior probabilities into account, which can further improve the ability to identify the class for each pixel. Finally, to overcome the impact of intensity inhomogeneity, we approximate the bias field at the pixel-by-pixel level by using a linear combination of orthogonal polynomials. The fuzzy objective function is then integrated with the bias field estimation model to overcome the intensity inhomogeneity in the image and segment the brain MR images simultaneously.

Results

To demonstrate the performances of the proposed algorithm for the images with/without skull stripping, the first group of experiments is carried out in clinical 3T-weighted brain MR images which contain quite serious intensity inhomogeneity and noise. Then we quantitatively compare our algorithm to state-of-the-art segmentation approaches by using Jaccard similarity on benchmark images obtained from IBSR and BrainWeb with different level of noise and intensity inhomogeneity. The comparison results demonstrate that the proposed algorithm can produce higher accuracy segmentation and has stronger ability of denoising, especially in the area with abundant textures and details.

Conclusion

In this paper, the RSCFCM algorithm is proposed by utilizing the negative log-posterior as the dissimilarity function, introducing a novel factor and integrating the bias field estimation model into the fuzzy objective function. This algorithm successfully overcomes the drawbacks of existing FCM-type clustering schemes and EM-type mixture models. Our statistical results (mean and standard deviation of Jaccard similarity for each tissue) on both synthetic and clinical images show that the proposed algorithm can overcome the difficulties caused by noise and bias fields, and is capable of improving over 5% segmentation accuracy comparing with several state-of-the-art algorithms.  相似文献   

20.
In this paper, we proposed an adaptive pixon represented segmentation (APRS) algorithm for 3D magnetic resonance (MR) brain images. Different from traditional method, an adaptive mean shift algorithm was adopted to adaptively smooth the query image and create a pixon-based image representation. Then K-means algorithm was employed to provide an initial segmentation by classifying the pixons in image into a predefined number of tissue classes. By using this segmentation as initialization, expectation-maximization (EM) iterations composed of bias correction, a priori digital brain atlas information, and Markov random field (MRF) segmentation were processed. Pixons were assigned with final labels when the algorithm converges. The adoption of bias correction and brain atlas made the current method more suitable for brain image segmentation than the previous pixon based segmentation algorithm. The proposed method was validated on both simulated normal brain images from BrainWeb and real brain images from the IBSR public dataset. Compared with some other popular MRI segmentation methods, the proposed method exhibited a higher degree of accuracy in segmenting both simulated and real 3D MRI brain data. The experimental results were numerically assessed using Dice and Tanimoto coefficients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号