首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Since both Ag and In are important melting point depressants in Sn–Zn based solders, a series Sn–Zn based solders with various amounts of Ag and In additions was studied in the experiment. The melting behavior of solder alloys, wetting characteristics, coefficients of thermal expansion, microstructural evolution and long-term reliability of the selected Sn–Zn based solder on Au/Ni–P metallized copper substrate were examined. Based on the experimental result, there is little change in the melting range of Sn–Zn based solder alloys by minor addition of Ag. On the contrary, the melting point of Sn–Zn based alloys can be effectively decreased by In additions. However, the difference between solidus and liquidus temperature is broadened as the increment of In into Sn–Zn based solders. 76Sn–9Zn–15In has the lowest liquidus temperature among all alloys, and it can effectively bond the Au/Ni–P metallized copper substrate. The microstructure of 76Sn–9Zn–15In alloy soldered at 200 °C for 20 min is primarily comprised of Sn–In γ phase and needle-like ZnO2. Since there is no flux usage during soldering, zinc oxide cannot be avoided even the process performed under 2×10−2 mbar vacuum environment. It is also noted that there is no interfacial reaction layer between 76Sn–9Zn–15In and Au/Ni–P metallized copper substrate after soldering. However, there is a reaction layer between 76Sn–9Zn–15In and substrate as the soldered specimen aged at 90 °C for 168 h. Its chemical composition is close to Zn-rich γ phase (NiZn3) alloyed with minor Sn, In, Cu and P. For the specimen further aged at 90 °C for 336 h, there are cracks along the interface between solder alloy and electroless Ni–P layer. The oxidation of the interfacial Zn-rich γ phase plays an important role in deterioration of the bonding between 76Sn–9Zn–15In and Au/Ni–P metallized copper substrate.  相似文献   

2.
Aging and accelerated thermal cycling (ATC) have been performed on 2512 chip resistors assembled with Sn3.8Ag0.7Cu (wt.%) solder. The boards were finished with immersion Ag (IAg), electroless nickel/immersion gold (ENIG), and hot air solder leveling Sn–Pb eutectic solder (HASL), and the components’ terminations were finished with 100% Sn and Sn8.0Pb (wt.%). The boards were reflowed with an average cooling rate of 1.6 °C/s. It was found that the microstructure and reliability of the solder joints depended on the board surface finish. The boards containing small amounts of Pb (from board/component terminations) were the most reliable. Solder joints to copper showed a significantly higher number of cycles to first failure than the joints on nickel. Better reliability of the Sn3.8Ag0.7Cu/Cu joints was attributed to an increased copper content in the bulk due to substrate dissolution.  相似文献   

3.
Major factors to the solder joint strength of ENIG layer in FC BGA package   总被引:4,自引:0,他引:4  
Since electroless nickel and immersion gold (ENIG) process was implemented as the surface finish of printed circuit board (PCB) substrate, there have been lots of reports on the brittle fracture between the Ni–P (phosphorous) layer and solder which results in the poor solder joint strength performance. Galvanic corrosion during immersion Au plating process and P-content in Ni–P layer were considered as major factors in the solder joint strength of ENIG layer in this investigation. The attempt to reduce the galvanic corrosion attack in Ni–P layer was made by changing immersion Au plating process to partial electroless Au plating process. Reducing the galvanic corrosion attack was proved to be effective to improve the solder joint strength of ENIG layer. Evaluation of the solder joint performances in variation with the thickness of the Ni layer leads to the conclusion that the thicker Ni layer has the better solder joint strength performances. The result also showed that higher P-content in Ni layer is more favorable to the solder joint strength.  相似文献   

4.
Solder joints are required to have high impact strength for use in portable electronic products. To make solder joints with high impact strength, qualitative evaluation methods of impact strength are required. Ball impact tests have been widely adopted in evaluating the impact strength of solder joints because of their easy implementation. Impact load curves obtained from ball impact tests are used as an evaluation indicator of impact strength of solder joint. However, a relation between fracture behavior and impact load curve has not yet been clarified, and an explanation of the impact load curve has not yet been provided in detail. In addition to this, detailed study about the relation between IMC layer thickness and impact strength has not been performed, although the IMC layer thickness formed at the interface would significantly affect the impact strength of the solder joint. This study aimed to explain the impact load curve in the ball impact test and to reveal the effect of the IMC layer thickness on the impact strength of the solder joint. Sn–3.0Ag–0.5Cu solder was reflowed on an electroless Ni–P plated Cu substrate (Ni–P), and a ball impact test was then carried out to evaluate the impact strength. This study found that the ball impact test is effective to evaluate the interfacial strength of solder joints. In the impact load curve, it is estimated that the solder bump keeps deforming until the interfacial crack initiates (maximum load), and the interfacial crack initiates after the maximum load and propagates along the interface between the solder and Ni–P. The suitable evaluation of impact strength became possible by measuring the correspondence relation between the deformation distance of the solder bump after fracture and the energy until maximum load and the relation between the area fraction of the residual solder on the fractured pad and the energy after maximum load. And, it is proved that the impact strength decreased with increasing aging time because the growth of the IMC layer remarkably degraded the interfacial strength of the solder joint.  相似文献   

5.
Reliability of QFP (quad flat package) solder joints after thermal shock was investigated for PCB’s and connecting leads plated with several different alloy coatings before soldering. Sn–8 wt%Zn–3 wt%Bi (hereafter, Sn–8Zn–3Bi) was selected as a solder, and FR-4 PCB’s finished with Cu/Sn, Cu/OSP and Cu/Ni/Au were used as substrates. The leads of the QFP were Cu plated with Sn–10 wt%Pb, or Sn, or Sn–3 wt%Bi. The QFP chips were mounted on the substrates using a Sn–8Zn–3Bi solder paste and reflowed in air atmosphere. The pull strength and microstructure for the soldered leads of QFP were evaluated before and after thermal shock testing. The leads plated with Sn or Sn–3Bi showed approximately 40–50% higher pull strength than the reference value of a Sn–37%Pb solder joint for all PCB-finishes. However, in the case of leads coated with Sn–10Pb, the pull strength of the leads soldered to a Sn-finished PCB was 21% lower than the reference value. In microstructure analysis of the joints with Sn–10Pb-plated leads, cracks were found along the bonded interface for Sn-finished PCB. The cracks were believed to start from the low melting temperature phase, 49.38 wt% Pb–32.58 wt%Sn–18.03 wt%Bi, found around the crack, and then propagated through Cu–Zn intermetallic compound. Meanwhile, even when using Sn–10Pb-plated leads, the PCB’s finished with Cu/Ni/Au coating had about 30% higher strength than the reference value, and cracks were hardly found on the soldered joint. Thus, even with Sn–10Pb-plated leads the Cu/Ni/Au-finished PCB’s were evaluated to be as reliable as the reference joint.  相似文献   

6.
Extensive microstructural and kinetic studies on the formation and growth of the intermetallics of Sn-rich solder/Cu couples have been reported. However, experimental data on the interdiffusion mechanisms during soldering reactions are limited and in conflict. The interdiffusion processes for soldering of Sn-3.5Ag alloy/Cu couples were investigated by using the Cr-evaporated surface as a reference line. At the beginning of soldering, Cu was observed to outdiffuse to the molten Sn−3.5Ag alloy until saturation, and the Sn−Ag solder dissolved with Cu collapsed below the reference line. As a result, the scallop-shaped Cu6Sn5 intermetallic compound was formed at the newly-formed Sn−Ag−Cu solder/Cu interface below the original Cu surface. When the soldered joint was reflowed at the lower temperature to suppress the Cu dissolution, the Cu6Sn5/Cu interface moved into the Cu substrate. Therefore, Sn is the dominant diffusing species for the intermetallic formation during the soldering process, although the extensive Cu dissolution occurs at the early stage of soldering.  相似文献   

7.
The scope of this paper covers a comprehensive study of the lead-free Sn-Zn-Bi solder system, on Cu, electrolytic Ni/Au and electroless Ni(P)/Au surface finishes. This includes a study of the shear properties, intermetallic compounds at the substrate-ball interface and dissolution of the under bump metallization. The Sn-8Zn-3Bi (wt.%) solder/Cu system exhibited a low shear load with thick IMCs formation at the interface. The dissolution of the Cu layer in the Sn-Zn-3Bi solder is higher than that of the other two Ni metallizations. It was found that the formation of a thick Ni-Zn intermetallic compound (IMC) layer at the solder interface of the electrolytic Ni bond pad reduced the mechanical strength of the joints during high temperature long time liquid state annealing. The solder ball shear-load for the Ni(P) system during extended reflow increased with an increase of reflow time. No spalling was noticed at the interface of the Sn-Zn-3Bi solder/Ni(P) system. Sn-8Zn-3Bi solder with electroless Ni(P) metallization appeared as a good combination in soldering technology.  相似文献   

8.
In this study we consider the effect of separately adding 0.5 wt.% to 1.5 wt.% Zn or 0.5 wt.% to 2 wt.% Al to the eutectic Sn-3.5Ag lead-free solder alloy to limit intermetallic compound (IMC) growth between a limited volume of solder and the contact metallization. The resultant solder joint microstructure after reflow and high-temperature storage at 150°C for up to 1000 h was investigated. Experimental results confirmed that the addition of 1.0 wt.% to 1.5 wt.% Zn leads to the formation of Cu-Zn on the Cu substrate, followed by massive spalling of the Cu-Zn IMC from the Cu substrate. Growth of the Cu6Sn5 IMC layer is significantly suppressed. The addition of 0.5 wt.% Zn does not result in the formation of a Cu-Zn layer. On Ni substrates, the Zn segregates to the Ni3Sn4 IMC layer and suppresses its growth. The addition of Al to Sn-3.5Ag solder results in the formation of Al-Cu IMC particles in the solder matrix when reflowed on the Cu substrate, while on Ni substrates Al-Ni IMCs spall into the solder matrix. The formation of a continuous barrier layer in the presence of Al and Zn, as reported when using solder baths, is not observed because of the limited solder volumes used, which are more typical of reflow soldering.  相似文献   

9.
In this study, microstructure evolution at intermetallic interfaces in SnAgCu solder joints of an area array component was investigated at various stages of a thermal cycling test. Failure modes of solder joints were analyzed to determine the effects of process conditions on crack propagation. Lead-free printed-circuit-board (PCB) assemblies were carried out using different foot print designs on PCBs, solder paste deposition volume and reflow profiles. Lead-free SnAgCu plastic-ball-grid-array (PBGA) components were assembled onto PCBs using SnAgCu solder paste. The assembled boards were subjected to the thermal cycling test (−40 °C/+125 °C), and crack initiation and crack propagation during the test were studied. Microstructure analysis and measurements of interface intermetallic growth were conducted using samples after 0, 1000, 2000 and 3000 thermal cycles. Failures were not found before 5700 thermal cycles and the characteristic lives of all solder joints produced using different process and design parameters were more than 7200 thermal cycles, indicating robust solder joints produced with a wide process window. In addition, the intermetallic interfaces were found to have Sn–Ni–Cu. The solder joints consisted of two Ag–Sn compounds exhibiting unique structures of Sn-rich and Ag-rich compounds. A crystalline star-shaped structure of Sn–Ni–Cu–P was also observed in a solder joint. The intermetallic thicknesses were less than 3 μm. The intermetallics growth was about 10% after 3000 thermal cycles. However, these compounds did not affect the reliability of the solder joints. Furthermore, findings in this study were compared with those in previous studies, and the comparison proved the validity of this study.  相似文献   

10.
The shear strength of the under bump metallurgy (UBM) structure in both the high-melting solder bump and low-melting solder bump after aging were evaluated. Scanning electron microscopy and transmission electron microscopy were examined in the intermetallic compounds (IMCs) and bump joint profiles at the interface between solder and UBM. In 900 h aging experiments, the maximum shear strength of Sn–97wt.%Pb and Sn–37wt.%Pb decreased by 25% and 20%, respectively. The growth of Cu6Sn5 and Cu3Sn was ascertained by the aging treatment. The crack path changes from the interior of a solder to the IMC interface. Compare with the Cu–Sn IMC, the amount of Ni–Sn IMC was small. The Ni layer is considered as the diffusion barrier.  相似文献   

11.
This paper examines various aspects of SAC (Sn–3.8Ag–0.7Cu wt.%) solder and UBM interactions which may impact interconnection reliability as it scales down. With different solder joint sizes, the dissolution rate of UBM and IMC growth kinetics will be different. Solder bumps on 250, 80 and 40 μm diameter UBM pads were investigated. The effect of solder volume/pad metallization area (V/A) ratio on IMC growth and Ni dissolution was investigated during reflow soldering and solid state isothermal aging. Higher V/A ratio produced thinner and more fragmented IMC morphology in SAC solder/Ni UBM reflow soldering interfacial reaction. Lower V/A ratio produced better defined IMC layer at the Ni UBM interface. When the ratio of V/A is constant, the IMC morphology and growth trend was found to be similar. After 250 h of isothermal aging, the IMC growth rate of the different bump sizes leveled off. No degradation in shear strength was observed in these solder bump after 500 h of isothermal aging.  相似文献   

12.
This study investigates the wettability of several lead-free solders, including Sn, Sn−Ag, and Sn−Bi, on electroless Ni (EN) with various phosphorus content. The role of phosphorus on solder wettability is studied. Microstructure evolution in the lead-free solder/EN joint is investigated with the aid of electron probe microanalyzer (EPMA) to relate metallurgical reactions between the solder and the EN. The SN solder exhibits better wettability on EN, while the Si−Bi solder has a larger contact angle. Wettability degrades as the phosphorus content in EN decreases. The dependence of wetting angle on the phosphorous content can be attributed to the surface roughness and density of EN, along with the interfacial reaction between the solders and EN. An EPMA analysis reveals the presence of a Sn−Bi−Ni−P solid solution at the interface of solder/EN joints due to the interdiffusion of major constituent Ni and Sn. The interaction zone of the solid solution increases with increasing temperature. Wettability of Pb-free solders on EN degrades with the presence of NiO due to oxidation or the existence of Ni3P due to precipitation after annealing. For an adequate wetting behavior in the Sn (Sn−Bi, Sn−Ag)/EN joint, EN deposited with phosphorus contents in the range of 9 to 12 wt% is suggested.  相似文献   

13.
Chip-on-glass (COG) mounting of area array electronic packages was attempted by heating the rear surfrace of a contact pad film deposited on a glass substrate. The pads consisted of an adhesion (i.e., Cr or Ti) and a top coating layer (i.e., Ni or Cu) was heated by an UV laser beam transmitted through the glass substrate. The laser energy absorbed on the pad raised the temperature of a solder ball which was in physical contact with the pad, forming a reflowed solder bump. The effects of the adhesion and top coating layer on the laser reflow soldering were studied by measuring the temperature profile of the ball during the laser heating process. The results were discussed based on the measurement of reflectivity of the adhesion layers. In addition, the microsctructures of solder bumps and their mechanical properties were examined.  相似文献   

14.
The effects of minor Ni addition (0.05 wt.%) on the microstructures and mechanical reliability of the lead-free solder joints used in the pin through hole (PTH) components were carefully investigated using a scanning electron microscope (SEM), a field-emission electron probe x-ray microanalyzer, and a pull tester. The PTH walls (i.e., Cu) of printed circuit boards (PCBs) were coated with organic solderability preservative (OSP) or electroless nickel/immersion gold (ENIG) surface finish before soldering. During soldering, the pins of the electronic components were first inserted into the PTHs deposited with OSP or ENIG, and then joined using a Sn–3Ag–0.5Cu (SAC) solder bath through a typical wave-soldering process. After wave soldering, a rework (the second wave soldering) was performed, where an SAC or Sn–0.7Cu–0.05Ni (SCN) solder bath was employed. The SCN joints were found to possess a higher tensile strength than the SAC ones in the OSP case. The sluggish growth of Cu3Sn, along with few Kirkendall voids at the solder/Cu interface caused by minor Ni addition into the solder alloy (i.e., SCN), was believed to be the root cause responsible for the increase in the strength value. However, the mechanical strength of the PTH components was revealed to be insensitive to the solder composition in the alternative case where an ENIG was deposited over the PTH walls. The implication of this study revealed that minor addition of Ni into the solder is beneficial for the solder/Cu joints, but for the solder/Ni(P) joints.  相似文献   

15.
The reliability of the eutectic Sn37Pb (63%Sn37%Pb) and Sn3.5Ag (96.5%Sn3.5%Ag) solder bumps with an under bump metallization (UBM) consisting of an electroless Ni(P) plus a thin layer of Au was evaluated following isothermal aging at 150 °C. All the solder bumps remained intact after 1500 h aging at 150 °C. Solder bump microstructure evolution and interface structure change during isothermal aging were observed and correlated with the solder bump shear strength and failure modes. Cohesive solder failure was the only failure mode for the eutectic Sn37Pb solder bump, while partial cohesive solder failure and partial Ni(P) UBM/Al metallization interfacial delamination was the main failure mode for eutectic Sn3.5Ag solder bump.  相似文献   

16.
The Si/Ti/Cu/electroless nickel/solder bump was produced incorporating wave soldering without flux. The most suitable wave soldering condition for depositing solder is presented. The material interactions occurring during wave soldering, afterwards reflow, and extended heat treatment were found to produce Ni3Sn2 , Ni3Sn4, and Ni4Sn compounds between solder and electroless nickel deposit. The thickness of electroless nickel deposit required for being the barrier layer of the solder bump was investigated by reflow process  相似文献   

17.
In this study, addition of Ag micro-particles with a content in the range between 0 and 4 wt.% to a Sn–Zn eutectic solder, were examined in order to understand the effect of Ag additions on the microstructural and mechanical properties as well as the thermal behavior of the composite solder formed. The shear strengths and the interfacial reactions of Sn–Zn micro-composite eutectic solders with Au/Ni/Cu ball grid array (BGA) pad metallizations were systematically investigated. Three distinct intermetallic compound (IMC) layers were formed at the solder interface of the Au/electrolytic Ni/Cu bond pads with the Sn–Zn composite alloys. The more Ag particles that were added to the Sn–Zn solder, the more Ag–Zn compound formed to thicken the uppermost IMC layer. The dissolved Ag–Zn IMCs formed in the bulk solder redeposited over the initially formed interfacial Au–Zn IMC layer, which prevented the whole IMC layer lifting-off from the pad surface. Cross-sectional studies of the interfaces were also conducted to correlate with the fracture surfaces.  相似文献   

18.
The Sn3.5Ag0.75Cu (SAC) solder joint reliability under thermal cycling was investigated by experiment and finite element method (FEM) analysis. SAC solder balls were reflowed on three Au metallization thicknesses, which are 0.1, 0.9, and 4.0 μm, respectively, by laser soldering. Little Cu–Ni–Au–Sn intermetallic compound (IMC) was formed at the interface of solder joints with 0.1 μm Au metallization even after 1000 thermal cycles. The morphology of AuSn4 IMC with a small amount of Ni and Cu changed gradually from needle- to chunky-type for the solder joints with 0.9 μm Au metallization during thermal cycling. For solder joints with 4 μm Au metallization, the interfacial morphology between AuSn4 and solder bulk became smoother, and AuSn4 grew at the expense of AuSn and AuSn2. The cracks mainly occurred through solder near the interface of solder/IMC on the component side for solder joints with 0.1 μm Au metallization after thermal shock, and the failure was characterized by intergranular cracking. The cracks of solder joints with 0.9 μm Au metallization were also observed at the same location, but the crack was not so significant. Only micro-cracks were found on the AuSn4 IMC surface for solder joints with 4.0 μm Au metallization. The responses of stress and strain were investigated with nonlinear FEM, and the results correlated well with the experimental results.  相似文献   

19.
Electroless Ni-P under bump metallization (UBM) has been widely used in electronic interconnections due to the good diffusion barrier between Cu and solder. In this study, the mechanical alloying (MA) process was applied to produce the SnAgCu lead-free solder pastes. Solder joints after annealing at 240°C for 15 min were employed to investigate the evolution of interfacial reaction between electroless Ni-P/Cu UBM and SnAgCu solder with various Cu concentrations ranging from 0.2 to 1.0 wt.%. After detailed quantitative analysis with an electron probe microanalyzer, the effect of Cu content on the formation of intermetallic compounds (IMCs) at SnAgCu solder/electroless Ni-P interface was evaluated. When the Cu concentration in the solder was 0.2 wt.%, only one (Ni, Cu)3Sn4 layer was observed at the solder/electroless Ni-P interface. As the Cu content increased to 0.5 wt.%, (Cu, Ni)6Sn5 formed along with (Ni, Cu)3Sn4. However, only one (Cu, Ni)6Sn5 layer was revealed, if the Cu content was up to 1 wt.%. With the aid of microstructure evolution, quantitative analysis, and elemental distribution by x-ray color mapping, the presence of the Ni-Sn-P phase and P-rich layer was evidenced.  相似文献   

20.
Board-level drop impact testing is a useful way to characterize the drop durability of the different soldered assemblies onto the printed circuit board (PCB). The characterization process is critical to the lead-free (Pb-free) solders that are replacing lead-based (Pb-based) solders. In this study, drop impact solder joint reliability for plastic ball grid array (PBGA), very-thin quad flat no-lead (VQFN) and plastic quad flat pack (PQFP) packages was investigated for Pb-based (62Sn–36Pb–2Ag) and Pb-free (Sn–4Ag–0.5Cu) soldered assemblies onto different PCB surface finishes of OSP (organic solderability preservative) and ENIG (electroless nickel immersion gold). The Pb-free solder joints on ENIG finish revealed weaker drop reliability performance than the OSP finish. The formation of the brittle intermetallic compound (IMC) Cu–Ni–Sn has led to detrimental interfacial fracture of the PBGA solder joints. For both Pb-based and Pb-free solders onto OSP coated copper pad, the formation of Cu6Sn5 IMC resulted in different failure sites and modes. The failures migrated to the PCB copper traces and resin layers instead. The VQFN package is the most resistant to drop impact failures due to its small size and weight. The compliant leads of the PQFP are more resistant to drop failures compared to the PBGA solder joints.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号