首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Formation of H2O2 from H2 and O2 and decomposition/hydrogenation of H2O2 have been studied in aqueous acidic medium over Pd/SiO2 catalyst in presence of different halide ions (viz. F, Cl and Br). The halide ions were introduced in the catalytic system via incorporating them in the catalyst or by adding into the reaction medium. The nature of the halide ions present in the catalytic system showed profound influence on the H2O2 formation selectivity in the H2 to H2O2 oxidation over the catalyst. The H2O2 destruction via catalytic decomposition and by hydrogenation (in presence of hydrogen) was also found to be strongly dependent upon the nature of the halide ions present in the catalytic system. Among the different halides, Br was found to selectivity promote the conversion of H2 to H2O2 by significantly reducing the H2O2 decomposition and hydrogenation over the catalyst. The other halides, on the other hand, showed a negative influence on the H2O2 formation by promoting the H2 combustion to water and/or by increasing the rate of decomposition/hydrogenation of H2O2 over the catalyst. An optimum concentration of Br ions in the reaction medium or in the catalyst was found to be crucial for obtaining the higher H2O2 yield in the direct synthesis.  相似文献   

2.
CeCu composite oxide catalysts were prepared by a hard-template method (CeCu-HT) and a complex method (CeCu-CA). The prepared CeCu composite oxide catalysts were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and Brunauer–Emmett–Teller (BET) analyses. The catalytic properties of the prepared CeCu composite oxide catalysts were also investigated by the catalytic combustion of toluene in air. XRD results showed that the synthesized CeCu composite oxide catalysts had different phase components and crystallinities but similar CeO2CuO solid solution phases. Low-angle XRD, TEM, and BET results indicated that the prepared CeCu-HT catalyst had a developed ordered mesoporous structure and a large specific surface area of 206.1 m2 g?1. Toluene catalytic combustion results indicated that the CeCu-HT catalyst had higher toluene catalytic combustion activity in air than the CeCu-CA catalyst. The minimum reaction temperature at which toluene conversion exceeded 90% for toluene catalytic combustion on the CeCu-HT catalyst was 225 °C. The toluene catalytic combustion conversion on the CeCu-HT catalyst at 240 °C exceeded 99.3% with decreased toluene concentration in air to below 70 ppm. On the other hand, the toluene catalytic combustion conversion on the CeCu-CA catalyst was only 92% even when the reaction temperature reached 280 °C. The differences between the toluene catalytic combustion performances of the CeCu composite oxide catalysts prepared by different methods can be attributed to their discrepant compositions and structures.  相似文献   

3.
Previous results on different catalysts revealed that methylcyclohexane underwent selective dehydrogenation to form toluene and hydrogen. This reaction system is a useful prototype model for similar systems in the chemical process and petroleum refining industries, such as hydrotreating for aromatics reduction, desulfurization, denitrogenation, reforming for aromatics reduction, dehydrocyclization, and fuel processing of liquid hydrocarbons in the generation of hydrogen feed for fuel cells. Dehydrogenation of methylcyclohexane to toluene is a method for hydrogen storage in the form of liquid organic hydrides. The efficiency of the dehydrogenation reactions and the quantity of products depend on the catalyst used. In the case of the dehydrogenation of methylcyclohexane to toluene, a metallic function, usually platinum is required as the catalyst. Although, there were some different catalysts used by former researchers, there was almost no investigation about the use of the nickel catalysts for this reaction. From the economical point of view, more efficient catalysts and reaction engineering methods should be developed for these reactions.In this work dehydrogenation of methylcyclohexane was performed in a fixed-bed catalytic reactor in the temperature range of 653–713 K on prepared Ni/Al2O3 catalysts having 5, 10, 15 and 20 wt.% Ni content. The inlet flowrates of methylcyclohexane and hydrogen to the reactor were changed by keeping one of them constant in order to investigate their effects on this reaction.  相似文献   

4.
Fe- and Mn-promoted ZrO2–SO4 (ZS) powders were prepared both by a single step sol–gel reaction and by impregnation of the zirconia hydrous precursor. The samples were calcined at 890 K and characterized for the structural (XRD) and morphological features (BET method). Surface functionalities were investigated by XPS, 1H MAS NMR and FTIR analyses. The liquid medium catalytic activity was tested with respect to both the esterification of benzoic acid to methylbenzoate and the benzylation of toluene. The acidity features appeared not to be significantly different among the various samples while all surface characterizations showed a lower affinity to retain water by the metal-promoted samples with respect to ZS, the more so in the case of iron-containing samples. The presence of Mn reduced the surface area and depressed the catalytic activity. Iron-doped catalysts appeared, instead, to be more efficient than ZS especially for the benzylation of toluene.  相似文献   

5.
The effect of Fe content in Ni–Fe–Al oxide nano-composites prepared by the solution-spray plasma technique on their catalytic activity for the high temperature water–gas shift reaction was investigated. The composites showed a hollow sphere structure, with highly dispersed Fe–Ni particles supported on the outer surface of the spheres. When the water–gas shift reaction was performed over an Ni–Al oxide composite catalyst without Fe, undesired CO methanation took place predominantly compared to the water–gas shift reaction, and significant amounts of hydrogen were consumed. When appropriate amounts of Fe were added to the Ni–Al oxide composite catalyst during the plasma process, methanation was suppressed remarkably, without serious loss of activity for the water–gas shift reaction. The catalyst was characterized by STEM, XRD and H2 chemisorption measurements.  相似文献   

6.
A microchannel catalytic reactor with improved heat and mass transport has been used for Fischer–Tropsch synthesis. It was demonstrated that this microchannel reactor based process can be carried out at gas hourly space velocity (GHSV) as high as 60,000 h−1 to achieve greater than 60% of single-pass CO conversion while maintaining relatively low methane selectivity (<10%) and high chain growth probability (>0.9). In this study, performance data were obtained over a wide range of pressure (10–35 atm) and hydrogen-to-carbon monoxide ratio (1–2.5). The catalytic materials were characterized using BET, scanning electron microcopy (SEM), transmission electron microcopy (TEM), and H2 chemisorption. A three-dimensional pseudo-homogeneous model was used to simulate temperature profiles in the exothermic reaction system in order to optimize the reactor design. Intraparticle non-isothermal characteristics are also analyzed for the FT synthesis catalyst.  相似文献   

7.
Co-precipitation, impregnation and ultrasonic sol–gel (USG) methods have been used to prepare Cu–Cr–Fe/γ-Al2O3 catalysts, which were further used to synthesize 2-methylpiperazine. The catalysts were characterized by XRD, XPS, TG/DSC, BET, TPR, AAS and TEM. It is found that preparation method can greatly impact the catalytic performance of the catalysts, the Cu–Cr–Fe/γ-Al2O3 catalyst prepared by the ultrasonic sol–gel method proved to be the most active and stable for this reaction. The dispersion and stabilization of Cu0 in the reduced catalysts are attributed to the existence of CuCr2O4 and Fe2O3. A surprising copper migration was detected by XPS analysis for the Cu–Cr–Fe/γ-Al2O3-USG catalyst after the calcination process, which may be crucial to the high activity and stability of this catalyst.  相似文献   

8.
The promoting effects of halogen ions (Cl, Br, I) on catalytic activity and selectivity in the hydrogenation of (E)-2-butenal to form (E)-2-buten-1-ol were investigated using alumina-supported cobalt catalyst in a liquid phase. The addition of Cl or Br to the reaction media greatly promoted the formation of (E)-2-buten-1-ol and simultaneously suppressed the formation of butanal, whereas the addition of I prevented CC bond hydrogenation. The promoting effects increased with increasing electronegativity of the halogen atoms. The rate ratio of CO bond hydrogenation to CC bond hydrogenation was increased eightfold when Cl was used under optimum conditions.  相似文献   

9.
The selective oxidation of methane with molecular oxygen over MoOx/La–Co–O and MoOx/ZrO2 catalysts to methanol/formaldehyde has been investigated in a specially designed high-pressure continuous-flow reactor. The properties of the catalysts, such as crystal phase, structure, reducibility, ion oxidation state, surface composition and the specific surface area have been characterized with the use of XRD, LRS, TPR, XPS and BET methods. MoOx/La–Co–O catalysts showed high selectivity to methanol formation while MoOx/ZrO2 revealed the property for the formation of formaldehyde in the selective oxidation of methane. 7 wt MoOx/La–Co–O catalyst gave 6.7 methanol yield (ca. 60 methanol selectivity) at 420°C and 4.2 MPa. On the other hand, the maximal yield of formaldehyde ca. 4 (47.8 formaldehyde selectivity) was obtained over 12wt MoOx/ZrO2 catalyst at 400 °C and 5.0MPa. 7MoOx/La–Co–O catalyst showed higher modified H2-consumption than 12MoOx/ZrO2 catalyst. The reducibility and the O/O2– ratio of the catalysts may play important roles on the catalytic performance. The proper reducibility and the O/O2– ratio enhanced the production of methanol in selective oxidation of methane. [MoO4]2– species in MoOx/ZrO2 catalysts enable selective oxidation of methane to formaldehyde.  相似文献   

10.
High temperature in situ FTIR has been used to investigate the surface species present on Cu/ZSM-5 during the reduction of NOx with propylene in a lean environment. Parallels have been observed between adsorbed surface species and catalytic activity for this reaction. Species detected at low temperatures are not representative of those detected at high temperatures where the catalyst is active. An oxidized nitrogen-containing species has been observed at 2580 cm–1 on Cu during reaction conditions (400°C). In contrast, at low temperatures, where the catalyst is less active, coke and Cu+-CO predominated. The effects of Cu weight loading, C/NO ratio, reaction temperature, and catalyst deactivation by steaming have been investigated with IR.  相似文献   

11.
The effect of alkali halides on the corrosion behaviour of nickel in (Na, K)NO3 eutectic has been investigated at a temperature of 400° C. Initial addition of the halide (Cl, Br or I) increases the steady-state potential to more noble values than for the pure melt. Further addition decreases the potential according to the equationE=a-blog C. Gravimetric measurements show that the corrosion of nickel increases in the presence of Cl and Br and decreases in the case of I. The anodic polarization increases in the presence of Cl and Br and decreases when I is added to the melt. These results are discussed, in the light of previous work, on the basis of the interaction of these halides with the nitrate melt to give the corresponding halogen or their catalytic effect on the dissociation of nitrate to give excess amounts of O2– ions. The liberated iodine may form a physically adsorbed layer on the nickel surface, offering some protection to the metal. In this respect Cl and Br behave as acidic additives and I behaves as a base.The presence of fluoride in the melt considerably increases the rate of nickel corrosion. The weight-gain increases linearly with logC. A small addition of fluoride shifts the steady-state potential towards more noble values. Further addition shifts it towards more negative values. These effects may be attributed to the small size of fluoride and its high reactivity. Fluoride can penetrate the oxide layer, and form insoluble nickel fluoride.  相似文献   

12.
Catalytic combustion of toluene on Cu-Mn/MCM-41 catalyst was performed in tubular flow reactor operated at atmospheric pressure. The effect of catalyst pre-treatment temperatures on the catalytic activity and stability was investigated. Some reaction variables, such as inlet concentration of toluene and oxygen, reaction temperatures and space velocities were varied over wide ranges, and the influence of different reaction conditions on toluene conversion was discussed. It is showed that the catalytic activity was significantly affected by calcination temperatures between 300 and 800 °C, and oxygen concentration, toluene concentration and space velocity are all key experimental factors to optimize the toluene combustion activities. The objective of this study was to investigate catalytic properties of Cu-Mn/MCM-41 catalysts prepared at different calcination temperatures, in order to obtain additional information to prepare an efficient and highly active catalyst at low temperature.  相似文献   

13.
A new silica based inorganic–organic hybrid zinc catalyst was synthesized and its catalytic activity was investigated for transesterification of β-ketoesters. Polymer supported catalyst was characterized by various techniques such as surface area (BET), elemental and thermogravimetric analyses, FTIR, 13C CPMAS spectral studies and atomic absorption spectroscopy (AAS). The reaction proceeded smoothly in the presence of 0.04 mmol of catalyst in toluene at refluxing conditions. The catalyst revealed higher catalytic activity compared to homogeneous catalyst and was reused without appreciable loss in catalytic activity.  相似文献   

14.
The catalytic activity of polycrystalline Pd films deposited on 8 mol% Y2O3-stabilized–ZrO2 (YSZ), an O2–-conductor, can be altered reversibly by varying the potential of the Pd catalyst film via the effect of nonfaradaic electrochemical modification of catalytic activity (NEMCA) or electrochemical promotion. The complete oxidation of ethylene was investigated as a model reaction in the temperature range 290–360 °C and atmospheric total pressure. The rate of C2H4 oxidation can be reversibly enhanced by up to 45% by supplying O2– to the catalyst via positive current application. The steady-state rate change is typically 103–104 times larger than the steady-state rate I/2F of electrochemical supply or removal of promoting oxide ions. The observed behaviour is discussed on the basis of previous NEMCA studies and the mechanism of the reaction.  相似文献   

15.
The optimized compositions K(4.9)/Co(2.7)/Mo(6.4)/A1203(gamma) and K(1.2)/ Rh(1.1)/Co(0.6)/Mo(5.7)/A1203(gamma) are both productive catalysts for higher alcohols. The incorporation of rhodium into the K/Co/Mo/A1203-system allows the space-time-yield for alcohols to be increased from 0.37 g alcohols (g catalyst)–1 h–1 to 1.1 g alcohols (g catalyst)–1 h–1. In addition, the higher productivity can be achieved with the rhodium-type catalyst at a lower reaction temperature (45°C lower), and so a higher selectivity to alcohols is observed. Potassium is a key promoter in both catalyst systems, and shifts the distribution of oxygenates towards higher alcohols. In IR measurements it is found that potassium stimulates bands for adsorbed CO around 1885 cm–. These bands are small for the K/Co/Mo/A1203 system, but are greatly stimulated by the incorporation of rhodium. It is suggested that these bands are indicative of the sites used to catalyze higher alcohols, thereby explaining the promotional effect of rhodium in the K/Co/Mo/A1203 catalyst system. Previous workers have suggested that the less-electron-rich sites (ionic) are important for methanol synthesis, while the more electron-rich sites (metallic) are important for higher alcohols and hydrocarbons synthesis. The IR measurements and reactivity data support these suggestions.  相似文献   

16.
Peculiarities in catalytic activity in carbon monoxide oxidation as well as some structure, electronic and magnetic properties of the three oxide catalysts, Mn3+–O/Al2O3 (1), Mn3+–O–Fe/Al2O3 (Mn-substituted spinel, 2) and -Fe2O3/Al2O3 (3), were studied by kinetic measurements and by Mössbauer spectroscopy. The catalysts 1 and 2 showed a kinetic bistability with a sharp transition towards more reactive state at 200°C (ignition point). In contrast, for catalyst 3, at 200–250°C, the behavior of reaction rate against temperature did not display noticeable hysteresis. On cooling the catalysts 1 and 2, extinction was observed at about 170 and 120°C, respectively, i.e., at 30–80°C lower than the corresponding ignition points. Proximity of activation energy for the high and low activity (15–19 kJ/mol) for both Mn-containing catalysts suggests an increase in the number of active sites at high temperature with no changes in the reaction mechanism. The considerable difference between Mn-containing catalysts 1, 2 and Fe-containing catalyst 3 may be caused by Jahn–Teller (JT) type distortions of the oxygen polyhedron around Mn3+. A significant spontaneous axial bond stretching within the local polyhedron seems to diminish Mn–O binding energy, facilitate the participation of surface oxygen species, OS, in the oxidation of CO by a redox mechanism and promote oxygen vacancies at the surface that would cause considerable effect on the activity. An increase in the width of the counterclockwise hysteresis loop for the catalyst 2 compared to the catalyst 1 indicates that clusters of mixed spinel provide more active sites and more labile OS species than clusters of the binary Mn oxide.  相似文献   

17.
    
Coprecipitation of Mg2+ and Al3+ with pre-synthesized [Ni(edta)]2– chelate at basic pH resulted in formation of a new layered double hydroxide (LDH) where [Ni(edta)]2– species occupied the interlayer space. The synthesized LDH was characterized by X-ray powder diffraction, diffuse reflectance FTIR and thermogravimetry-differential thermal analysis under inert and oxidative atmosphere. Calcination of LDH led to NiMgAl mixed oxide which after reduction with hydrogen exhibited high catalytic function toward the reaction of methane reforming with carbon dioxide to synthesis gas. The catalyst maintained high activity within 150 h time on stream at 800°C and could be used repeatedly after regeneration. Although coke deposition onto the catalyst surface attained 5–10 wt%, it did not diminish reagent conversion and product selectivity.  相似文献   

18.
A cyclic voltammetric study of the behaviour of Br and Br 3 at Pt electrodes, in the potential range between hydrogen and oxygen evolution, is described. Different experiments were carried out, in the presence of Br and Br 3, in which the ratio between the species has been kept constant and equal to 1. The halide concentration was varied between 4 × 10–6 and 1 × 10–3 and mol dm–3, at constant ionic strength, in 1 M HclO4 as well as in 1 M NaClO4 adjusted to a pH of 2. Underpotential deposition of Br is observed at potentials as low as –0.125 V vs SCE. The adsorption parameters of Br species were determined from the adsorption/desorption peak pair in the hydrogen adsorption/desorption region, and from the oxide reduction peak data. In the absence of oxygen adsorption, a relatively high coverage of the electrode surface is attained. A Langmuir-type adsorption is observed under the different experimental conditions.  相似文献   

19.
The effects of high temperature pretreatments on the activity of MgO and Li/MgO catalysts for the oxidative coupling of methane have been studied. The MgO powder catalyst exhibited a turnover frequency of 3.0×10–3 molecules/sites, at 990K, whereas the Li/MgO catalyst showed a turnover frequency of 7.0×10–2 molecules/sites, under the same reaction conditions. The initial C2 formation rate was observed to increase with pretreatment temperature over the MgO catalyst, supporting our previous proposal that F-type defects are responsible for methane activation.  相似文献   

20.
A series of catalysts of manganese oxide, manganese–cerium and iron–manganese oxide supported on USY (ultra-stable Y zeolite) were studied for the low-temperature selective catalytic reduction (SCR) of NO with ammonia in the presence of excess oxygen. It was found that MnOx/USY have high activity and high selectivity to N2 in the temperature range 80-180 °C. The addition of iron and cerium oxide increased NO conversion significantly although the single-component Fe/USY and Ce/USY catalysts had low activities. Among the catalysts studied in this work, the 14% Ce-6% Mn/USY showed the highest activity. The results showed that this catalyst yielded nearly 100% NO conversion at 180 °C at a space velocity of 30 000 cm3 g-1 h-1. The only product is N2 (with no N2O) below 150 °C. The effects of the concentration of oxygen, NO and NH3 were studied and the steady-state kinetics were also investigated. The reaction order is 1 with respect to NO and zero with respect to NH3 on the 14% Ce-6% Mn/USY catalyst at 150 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号