首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
石墨烯的制备与表征研究   总被引:5,自引:1,他引:5  
石墨烯材料是近两年的一个研究热点.简要回顾了石墨分离的历史,着重介绍了石墨烯的制备方法:GICs插层法、还原氧化石墨法、微机械剥离法和化学沉积法,分析了各种制备方法的特点以及所面临的问题,概述了石墨烯的不同表征方法以及应用,并展望了其未来发展前景.  相似文献   

2.
石墨烯制备、表征及应用研究最新进展   总被引:2,自引:0,他引:2  
石墨烯由于其特殊的电学、热学、力学等性质以及在纳米电子器件、储能材料、光电材料等方面的潜在应用,引起了科学界新一轮的"碳"热潮。分析了近1年来发表在Science、Nature等期刊上的关于石墨烯的论文,对石墨烯制备、表征及应用方面的最新进展进行了综述,并对各种制备技术及表征手段进行了分析评价。  相似文献   

3.
石墨烯纳米片的制备和表征   总被引:2,自引:0,他引:2  
以鳞片石墨为原料,采用氧化插层和微波膨化制备膨胀石墨,对膨胀石墨进行二次酸化膨胀处理,利用超声剥离法制备石墨烯纳米片,并借助XRD、SEM、RAMAN和AFM等分析其微观结构和形貌。结果表明:微波膨化处理可快速高效得到膨胀石墨;通过对膨胀石墨超声剥离可破坏其原有网络结构并将石墨晶片剥离为大量的石墨薄片;对二次膨胀处理的膨胀石墨进行超声剥离可得到石墨烯纳米片,其中包含大量的3-5层石墨烯。  相似文献   

4.
石墨烯是目前一种新型二维碳纳米材料,因其特殊的结构和良好的性能,近年以来来在化学、物理和材料学界引起了多数学者的研究兴趣。本文重点综述了石墨烯的制备方法及特点,如微机剥离法、化学还原氧化石墨烯法、化学气相沉积法等,随着研究的深入,对石墨烯的发展应用也成为目前的热点内容。  相似文献   

5.
石墨烯的制备、表征与特性研究进展   总被引:1,自引:2,他引:1  
石墨烯是最近几年才发现的碳材料的新成员,其完美的二维结构和许多奇特的性质,引起了科学家的极大兴趣。石墨烯的基础研究和应用研究成为当前前沿研究热点之一。引用近3年的国内外参考文献对石墨烯的制备方法(氧化还原法和化学气相沉积法)、转移方法(衬底腐蚀法)、表征方法(拉曼光谱、扫描电子显微镜和X射线衍射)、应用研究等进行了详尽的综述,并介绍了石墨烯研究中所遇到的难题。最后,对石墨烯在其他领域的应用进行了展望,指出了石墨烯未来的研究方向。  相似文献   

6.
姜丽丽  鲁雄 《功能材料》2012,43(23):3185-3189,3193
近年来,石墨烯以其独特的结构和优异的材料性能而广泛应用于物理、化学及材料学等领域。参考了最新的参考文献资料,综述了石墨烯的制备方法,如外延生长、气相沉积、机械剥离、氧化还原等方法,并探讨了各种制备方法的研究进展及未来的发展方向。  相似文献   

7.
石墨烯复合材料具有优异的性能和广泛的潜在用途,目前对石墨烯复合材料的性能及应用已有较多的文章进行了详细的综述,但对石墨烯复合材料制备方法的原理却很少进行系统论述。综述了石墨烯复合材料的基本结构、制备方法和原理、制备方式,并对石墨烯表面的功能化改性进行了阐述,最后对各种石墨烯复合材料的制备方法和过程逐一作了介绍,同时对今后石墨烯复合材料制备需要解决的问题作了展望。  相似文献   

8.
通过优化Hummers法制备了氧化石墨烯,并用水合肼还原法制备了石墨烯,且对自制的石墨烯和氧化石墨烯进行了测试及分析;然后通过溶液插层法制得纳米级聚乳酸/石墨烯和聚乳酸/氧化石墨烯复合材料,并对其分散性、热学性能以及力学性能进行了分析。对石墨烯和氧化石墨烯的表征结果说明,水合肼可以还原氧化石墨,所制备的石墨烯纯度较高。对聚乳酸/石墨烯和聚乳酸/氧化石墨烯复合材料的性能分析结果表明,在聚乳酸的结晶度、结晶速率和对聚乳酸的结晶成核上,石墨烯比氧化石墨烯具有更优异的表现,但在热稳定性能方面,氧化石墨烯比石墨烯优异;在力学性能方面,有增强和降低两种影响,添加少量氧化石墨烯时聚乳酸的力学性能降低,而含质量分数为0.5%的石墨烯复合材料在拉伸实验和冲击实验中的增强效果较为明显。  相似文献   

9.
石墨烯是由sp2杂化的碳原子键合而成的具有六边形蜂窝状晶格结构的二维原子晶体,其具有电学、力学和光学等方面一系列优良性能,使得它在各个领域的应用一直被人们所关注。然而,石墨烯的工业化制备仍然面临着巨大的挑战。本文采用化学气相沉积法(CVD)制备石墨烯,并用拉曼光谱、高分辨率扫描电镜和X射线多晶衍射对其进行了分析和表征。研究结果表明,用CVD法制备石墨烯具有工业化的可能。  相似文献   

10.
石墨烯是近些年来发现的一种新型碳材料,其完美的二维结构引起了科学家们的兴趣。文章综述了国内外石墨烯的制备及改性方法,并阐述了石墨烯各种制备方法及其优缺点,为石墨烯的工业化制备及功能化处理具有参考意义。  相似文献   

11.
石墨烯作为一种新型二维碳纳米材料,具有极好的物理性质和极大的应用潜力。如何大规模制备高质量、低成本的石墨烯是石墨烯产业化的关键问题。本文综述了石墨烯的制备方法及其优缺点,详细介绍了超临界流体剥离制备石墨烯的原理、研究现状及表征方法。讨论了超声波和芘基聚合物辅助超临界流体剥离制备石墨烯法的特点。超临界流体剥离制备石墨烯法设备简单、条件易达到、产品质量高,为石墨烯的工业化生产提供了新的思路。  相似文献   

12.
余夏阳  徐键  卢焕明 《材料导报》2016,30(Z2):15-20, 31
氧化锌/石墨烯纳米复合材料在储能、光电材料与器件、光催化剂等方面具有广阔的应用前景,其所含元素无毒无害,储量丰富,适用于溶剂热法、超声空化法、电化学沉积等低成本非真空制备方法,故氧化锌/石墨烯复合材料近来成为复合材料领域研究热点之一。综述了氧化锌/石墨烯复合材料的多种制备方法,讨论了各制备方法的工艺特点与不足,分析了不同制备方法对氧化锌/石墨烯纳米复合材料形貌与性能的影响,展望了其未来工业化规模制备的发展趋势。  相似文献   

13.
石墨烯以其高强度、高导电性、极轻薄等优势,使其在电子、航天、军工、生物、新能源、半导体等领域具有广阔的应用潜力,成为国际上的研究热点和竞争焦点。石墨烯的制备是石墨烯走向应用的关键,如何大规模制备高质量、大尺寸、低成本的石墨烯是产业化亟待解决的问题。本文对近些年在石墨烯的制备方法方面取得的进展及优缺点进行了综述。  相似文献   

14.
石墨烯复合材料的制备及应用研究进展   总被引:1,自引:0,他引:1  
石墨烯是碳原子以sp2杂化连接而成的单原子层结构,这一独特的二维结构使得石墨烯具有优异的光电性能、热稳定性以及化学性能.石墨烯复合材料的制备、性能和应用成为近年的研究热点.本文综述了石墨烯复合材料的制备方法,包括石墨烯/高分子复合材料、石墨烯/金属(金属氧化物)复合材料、石墨烯三元复合材料,以及石墨烯复合材料在锂电池、电容器、光伏材料、传感器等方面的应用研究进展,指出了石墨烯复合材料研究的重要方向.  相似文献   

15.
基于石墨烯吸波材料的研究进展   总被引:1,自引:0,他引:1  
李庆  陈志萍  杨晓峰  李巧玲 《材料导报》2015,29(19):28-35, 39
吸波材料作为防护电磁辐射污染及武器装备隐身的重要物质基础,是各国研究的热点和重点。石墨烯作为一种新型的碳材料,具有优异的力学、热学和电学特性。尤为重要的是,石墨烯较高的介电常数以及外层电子易极化弛豫特性使其可作为潜在的介电损耗基材,应用于吸波领域,因而近年来受到了广泛的关注。从石墨烯基复合吸波材料的制备方法与吸波特性两个角度对该类吸波材料进行了综述,并展望了其发展方向。  相似文献   

16.
石墨烯的制备研究进展   总被引:2,自引:0,他引:2  
近年来, 石墨烯以其独特的结构和优异的性能, 在化学、物理和材料学界引起了广泛的研究兴趣. 人们已经在石墨烯的制备方面取得了积极的进展, 为石墨烯的基础研究和应用开发提供了原料保障. 本文大量引用近三年最新参考文献, 综述了石墨烯的制备方法: 物理方法(微机械剥离法、液相或气相直接剥离法)与化学法(化学气相沉积法、晶体外延生长法、氧化?还原法), 并详细介绍了石墨烯的各种修饰方法. 分析比较了各种方法的优缺点, 指出了石墨烯制备方法的发展趋势.  相似文献   

17.
李宏  李云 《材料导报》2013,27(15):37-41
简要概述了石墨烯透明导电薄膜的结构与性质、几种常见的石墨烯透明导电薄膜的制备方法以及潜在应用,对石墨烯透明导电薄膜的研究现状进行了评述。最后,就目前石墨烯透明导电薄膜研究中所面临的问题进行了讨论,并展望了其应用前景与发展趋势。  相似文献   

18.
制备工艺是调控石墨烯/陶瓷复合材料结构、优化其力学和热电等性能的关键.重点综述了石墨烯/陶瓷复合材料的粉末压坯烧结工艺和3D打印工艺及其研究进展.粉末压坯烧结工艺包括无压烧结、热压烧结、放电等离子烧结、微波烧结和高频感应加热烧结等,具有工艺简单、材料性能好、制备参数易控制等优点,是石墨烯/陶瓷复合材料的主要制备工艺,用于制备致密的块体复合材料;主要3D打印工艺有直写成形、激光选区烧结、喷墨打印和立体光固化等,具有结构和形状可控的特点,是目前石墨烯/陶瓷复合材料的研究热点,用于成形复杂形状和特定性能的复合材料器件.另外,还简要介绍了原位生成法、碳热还原法等利用特定物理化学反应制备石墨烯/陶瓷复合材料的制备工艺,并综述了石墨烯在复合材料中的分散工艺.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号