首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
The shear‐induced crystallization behavior of PET was investigated by measuring the time‐dependent storage modulus (G′) and dynamic viscosity (η′) with a parallel‐plate rheometer at different temperatures and shear rate. The morphology of shear‐induced crystallized PET was measured by DSC, X‐ray, and polarizing optical microscopy. When a constant shear rate was added to the molten polymer, the shear stress increased with the time as a result of the orientation of molecular chains. The induction time of crystallization is decreased with frequency. Moreover, the rate of isothermal crystallization of PET was notably decreased with increasing temperature. The shape of spherulites is changed to ellipsoid in the direction of shear. In addition, aggregation of spherulites is increased with increasing frequency. Particularly, the row nucleation morphology could be observed under polarized light for ω = 1. From the results of DSC, the melting point and enthalpy have a tendency to decrease slightly with increasing frequency. The crystallite size and perfectness decreased with frequency, which was confirmed with X‐ray data. The unit length of the crystallographic unit cell of the PET increased and the (1 0 3) plane peak increased with increasing frequency. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 2640–2646, 2001  相似文献   

2.
Poly(ethylene terephthalate) copolymers were prepared by melt polycondensation of dimethyl terephthalate and excess ethylene glycol with 10–40mol% (in feed) of poly(ethylene glycol) (E) and poly(tetramethylene glycol) (B), with molecular weight (MW) of E and B 200–7500 and 1000, respectively. The reduced specific viscosity of copolymers increased with increasing MW and content of polyglycol comonomer. The temperature of melting (Tm), cold crystallization and glass transition (Tg) decreased with the copolymerization. Tm depression of copolymers suggested that the E series copolymers are the block type at higher content of the comonomer. Tg was decreased below room temperature by the copolymerization, which affected the crystallinity and the density of copolymer films. Water absorption increased with increasing content of comonomer, and the increase was much higher for E1000 series films than B1000 series films. The biodegradability was estimated by weight loss of copolymer films in buffer solution with and without a lipase at 37°C. The weight loss was enhanced a little by the presence of a lipase, and increased abruptly at higher comonomer content, which was correlated to the water absorption and the concentration of ester linkages between PET and PEG segments. The weight loss of B series films was much lower than that of E series films. The abrupt increase of the weight loss by alkaline hydrolysis is almost consistent with that by biodegradation.  相似文献   

3.
Commercial grade poly(ethylene terephthalate), (PET, intrinsic viscosity = 0.80 dL/g) and poly(butylene terephthalate), (PBT, intrinsic viscosity = 1.00 dL/g) were melt blended over the entire composition range using a counterrotating twin‐screw extruder. The mechanical, thermal, electrical, and rheological properties of the blends were studied. All of the blends showed higher impact properties than that of PET or PBT. The 50:50 blend composition exhibited the highest impact value. Other mechanical properties also showed similar trends for blends of this composition. The addition of PBT increased the processability of PET. Differential scanning calorimetry data showed the presence of both phases. For all blends, only a single glass‐transition temperature was observed. The melting characteristics of one phase were influenced by the presence of the other. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 75–82, 2005  相似文献   

4.
Physical blends of poly(ethylene terephthalate) (PET) and poly(ethylene isophthalate) (PEI), abbreviated PET/PEI (80/20) blends, and of PET and a random poly(ethylene terephthalate‐co‐isophthalate) copolymer containing 40% ethylene isophthalate (PET60I40), abbreviated PET/PET60I40 (50/50) blends, were melt‐mixed at 270°C for different reactive blending times to give a series of copolymers containing 20 mol % of ethylene isophthalic units with different degrees of randomness. 13C‐NMR spectroscopy precisely determined the microstructure of the blends. The thermal and mechanical properties of the blends were evaluated by DSC and tensile assays, and the obtained results were compared with those obtained for PET and a statistically random PETI copolymer with the same composition. The microstructure of the blends gradually changed from a physical blend into a block copolymer, and finally into a random copolymer with the advance of transreaction time. The melting temperature and enthalpy of the blends decreased with the progress of melt‐mixing. Isothermal crystallization studies carried out on molten samples revealed the same trend for the crystallization rate. The effect of reaction time on crystallizability was more pronounced in the case of the PET/PET60I40 (50/50) blends. The Young's modulus of the melt‐mixed blends was comparable to that of PET, whereas the maximum tensile stress decreased with respect to that of PET. All blend samples showed a noticeable brittleness. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 3076–3086, 2003  相似文献   

5.
PEN/PET共混物结晶行为研究   总被引:1,自引:0,他引:1  
用差示扫描量热法(DSC)研究了不同共混比例PEN/PET共混物的熔体结晶行为,并进行了等温结晶动力学测定。结果表明:随着两种组分向中间比例(50/50)靠近,共混物的熔融温度越低,结晶速率也越慢。  相似文献   

6.
To reclaim the monomers or prepare intermediates suitable for other polymers zinc acetate catalayzed glycolysis of waste poly(ethylene terephthalate) (PET) was carried out with ethylene or propylene glycol, with PET/glycol molar ratios of1 : 0.5–1 : 3, in xylene at 170–245°C. During the multiphase reaction, depolymerization products transferred to the xylene medium from the dispersed PET/glycol droplets, shifting the equilibrium to glycolysis. Best results were obtained from the ethylene glycol (EG) reaction at 220°C, which yielded 80 mol % bis-2-hydroxyethyl terephthalate monomer and 20 mol % dimer fractions in quite pure crystalline form. Other advantages of employment of xylene in glycolysis of PET were improvement of mixing at high PET/EG ratios and recycling possibility of excess glycol, which separates from the xylene phase at low temperatures. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 69: 2311–2319, 1998  相似文献   

7.
Poly(ethylene terephthalate) (PET)/polyphenoxy blends were prepared by melt blending. Crystalline and thermal behaviors of PET/polyphenoxy blends were verified by use of DSC. The experiment results show that the initial temperature, peak temperature, and ending temperature of cold crystallization increase with increasing phenoxy content. On the contrary, the onset melting temperature, finishing melting temperature, and peak temperature in the first heating and the secondary heating processes decrease with increasing phenoxy content. The crystallization enthalpy and melting enthalpy, as well as the crystallization rate, decrease with increasing phenoxy content. Avrami exponents of the blends are slightly higher than that of pure PET and almost independent of phenoxy content. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 878–885, 2005  相似文献   

8.
Copolyesters containing poly(ethylene terephthalate) and poly(hexamethylene terephthalate) (PHT) were prepared by a melt condensation reaction. The copolymers were characterised by infrared spectroscopy and intrinsic viscosity measurements. The density of the copolyesters decreased with increasing percentage of PHT segments in the backbone. Glass transition temperatures (Tg). melting points (Tm) and crystallisation temperatures (Tc) were determined by differential scanning calorimetry. An increase in the percentage of PHT resulted in decrease in Tg, Tm and Tc. The as-prepared copolyesters were crystalline in nature and no exotherm indicative of cold crystallisation was observed. The relative thermal stability of the polymers was evaluated by dynamic thermogravimetry in a nitrogen atmosphere. An increase in percentage of PHT resulted in a decrease in initial decomposition temperature. The rate of crystallisation of the copolymers was studied by small angle light scattering. An increase in percentage of PHT resulted in an increase in the rate of crystallisation.  相似文献   

9.
The acetaldehyde (AA) scavenging abilities of poly(ethylene terephthalate) (PET) blends containing various concentrations of anthranilamide, meta-xylenediamine (MXDA), or alpha-cyclodextrin have been evaluated. It was found that higher AA scavenger concentrations generally resulted in greater reductions in detectable AA in terms of both the AA generation rates and residual AA contents. As little as 100 ppm, by weight, of anthranilamide and MXDA were respectively shown to reduce residual AA detected in PET preforms by 46% and 36%. Melt-blending 500 ppm of alpha-cyclodextrin, into PET, reduced preform residual AA concentration by 42%. The scavengers acted as PET nucleating agents causing more rapid crystallization while heating the blends from the glassy state and when cooling from the melt; however, they caused no changes in the glass transitions, melting characteristics, or oxygen permeation behaviors of the blends. Addition of optimal scavenger concentrations had minimal effects on preform intrinsic viscosity and color changes. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

10.
This paper reviews the state of the art in the field of the hydrolytic degradation of poly(ethylene terephthalate) (PET) under bio-environmental conditions. Most of the papers published so far on this subject have been focused on the hydrolysis of PET at high temperatures. Although some authors claim to enhance the biodegradation properties of this aromatic polyester by copolymerization with readily hydrolysable aliphatic polyesters, no clear and satisfying conclusions can yet be formulated. Poly(ethylene terephthalate-co-lactic acid), poly(ethylene terephthalate-co-ethylene glycol), and poly(ethylene terephthalate-co-ε-caprolactone) block and random copolymers are the modifications mainly investigated for biodegradable applications. The hydrodegradability and biodegradability of PET, PET copolymers and PET blends are detailed in this review. A total of 89 references including 16 patents are cited. © 1999 Society of Chemical Industry  相似文献   

11.
Poly(ethylene glycol) (PEG) and end‐capped poly(ethylene glycol) (poly(ethylene glycol) dimethyl ether (PEGDME)) of number average molecular weight 1000 g mol?1 was melt blended with poly(ethylene terephthalate) (PET) oligomer. NMR, DSC and WAXS techniques characterized the structure and morphology of the blends. Both these samples show reduction in Tg and similar crystallization behavior. Solid‐state polymerization (SSP) was performed on these blend samples using Sb2O3 as catalyst under reduced pressure at temperatures below the melting point of the samples. Inherent viscosity data indicate that for the blend sample with PEG there is enhancement of SSP rate, while for the sample with PEGDME the SSP rate is suppressed. NMR data showed that PEG is incorporated into the PET chain, while PEGDME does not react with PET. Copyright © 2005 Society of Chemical Industry  相似文献   

12.
The molecular structure of the copolyester formed through the interchange reaction in poly(ethylene terephthalate)/poly(butylene terephthalate) blends was investigated with 13C-NMR spectroscopy. The molar fractions of heterolinkage triads in the copolyesters were lower than the values calculated by Bernoullian statistics; this indicates that the sequence of heterolinkages was far from a random distribution at the initial stage of the interchange reaction. However, the randomness increased and the number-average sequence length decreased with reaction time. The solubility of the blend decreased with increasing sequence length, resulting from the formation of block copolymers with long sequence lengths at the initial stage of the interchange reaction. The solubility of the copolyester formed by a dibutyltin dilaurate (DBTDL)-catalyzed reaction was higher than that of the copolyester formed by a titanium tetrabutoxide-catalyzed reaction; this is related to the fact that alcoholysis prevailed in the DBTDL-catalyzed reaction. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 159–168, 2001  相似文献   

13.
The mechanical fracture strength and toughness of short-fibre composites, injection moulded from compounds of poly(ethylene terephthalate) (PET) containing 10 and 30% (by weight) (w/o) glass, have been investigated and the dependence upon matrix hydrolytic stability determined. Mouldings have been characterised by several physical techniques to evaluate molecular weight, degradation rates, crystallinity and morphology, whilst time-dependent gravimetric data were derived to quantify sorption kinetics and allow comparisons with theoretical reaction rates to be made. During melt processing, PET is hydrolysed extremely rapidly by traces of moisture (<0.02w/o). yet the inherent strength of moulded composites declines significantly only below an apparently critical molecular weight. However, on long-term humid ageing in hot water, impact behaviour especially is rendered more complex by simultaneous crystallisation, molecular reorder and losses of interfacial bond strength.  相似文献   

14.
This paper covers the recent research carried out by the authors on the chemical recycling of poly(ethylene terephthalate) (PET) taken from post‐consumer soft‐drink bottles. The chemical recycling techniques used are critically reviewed and the authors' contribution is highlighted. Hydrolysis in either an alkaline or acid environment was employed in order to recover pure terephthalic acid monomer that could be repolymerized to form the polymer again. Alkaline hydrolysis was carried out in either an aqueous NaOH solution or in a non‐aqueous solution of KOH in methyl cellosolve. A phase‐transfer catalyst was introduced in alkaline hydrolysis, in order that the reaction takes place at atmospheric pressure and in mild experimental conditions. The reaction kinetics were thoroughly investigated, both experimentally and theoretically, using a simple, yet precise, kinetic model. Moreover, glycolysis was examined as an effective way for the production of secondary value‐added materials. The glycolysated PET products (oligomers) can be used as raw materials for the production of either unsaturated polyester resins (UPR) or methacrylated oligoesters (MO). UPR can subsequently be cured with styrene in ambient temperature to produce alkyd resins used as enamel paints or coatings. MO are potential monomers that can be cured either by UV irradiation or temperature to produce formulations used as coatings for wood surfaces, paints, or other applications. Thus, recycling of PET does not only serve as a partial solution to the solid‐waste problem, but also contributes to the conservation of raw petrochemical products and energy.

  相似文献   


15.
以对苯二甲酸(PTA)、乙二醇(EG)、异山梨醇(ISB)为原料,通过直接熔融缩聚法合成聚(对苯二甲酸乙二醇酯-co-对苯二甲酸异山梨醇酯)(PEIT)共聚酯。利用差示扫描量热法(DSC)研究了共聚酯的结晶行为,采用Avrami方程分析了共聚酯的等温结晶动力学。结果表明,PEIT共聚酯结晶行为受共聚组成和结晶温度影响。随着ISB用量的增加或结晶温度的降低,共聚酯半结晶周期t1/2增加、结晶速率变慢;ISB摩尔分数超过20%,共聚酯无法结晶。  相似文献   

16.
The effect of radiation dose (10–30 kGy) on the thermal decomposition of poly(ethylene terephthalate) was studied using thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and X‐ray diffraction (XRD) analysis. The TGA and DSC were carried out in a flowing nitrogen atmosphere at heating rates of 5 and 30°C/min for TGA and 10°C/min for DSC. The degradation process was composed of three overlapping stages. The second stage, at which a rapid degradation occurs, was studied in detail. The process was found to follow a second‐order kinetics and was independent of radiation dose or heating rate. The reaction rate constant (k) was found to depend on the heating rate and iradiation dose. The apparent activation energy (Q) and the logarithm of the preexponential rate constant (log A) were found to decrease linearly with the increase in dose at rates of 3.32 kJ mol?1 kGy?1 and 0.177 s?1 kGy?1 with intercepts of 249 kJ/mol and 12.26 s?1 for Q and log A of unirradiated fabric, respectively. A direct relationship was found between the percentage decrease in Q and log A and the percentage decrease in the temperature corresponding to 50% conversion (T50%) for samples irradiated at different doses. It was found that a decrease in T50% by 1% resulted in a decrease in Q and log A by 1.855 and 2.1%, respectively. Changes in Q and log A resulting from radiation, mechanical and thermal treatments, or their combinations can be predicted from the shift in T50%. The history of the fibers substantially affected the thermal properties. DSC and XRD studies revealed changes in the fabric crystallinity. DSC measurements indicated a linear increase in heat of fusion with dose increase at a rate of 0.855 kJ kg?1 kGy?1. XRD analysis confirmed structural changes, rearrangement by plane rotations, and formation of compact crystalline lattice with patterns characterizing irradiated samples. An attempt to explain the dependency of the apparent activation energy on dose was given. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 3710–3720, 2004  相似文献   

17.
The randomly branched poly(ethylene terephthalate) (BPET) was prepared by bulk polycondensation from dimethyl terephthalate (DMT) and ethylene glycol (EG), with 0.4–5.0 mol % (with respect to DMT) of glycerol (GL) as a branching agent. The glass transition and crystallization behavior was studied by differential scanning calorimetry (DSC). It was found that the glass transition temperature of BPET reduced with the increasing content of GL until 1.2 mol %, and then increases a little at high degrees of branching. When compared with a linear PET, the crystallization temperature of BPET from the melt shifted to higher temperature as GL content was smaller than 1.2 mol %, and then became lower while GL load was added. Nonisothermal crystallization kinetics was studied through the modified Avrami analysis. It was revealed that the overall crystallization rate parameter of BPET became larger when the GL content was less than 1.2 mol %, then turned to lower at higher branching degree. This indicated that low degree of branching could enhance the overall crystallization of poly(ethylene terephthalate) (PET), whereas high degree of branching in the range of 3.5–5.0 mol % would block the development of crystallization. On the basis of Hoffman's secondary crystallization theory, the product σσe of the free energy of formation per unit area of the lateral and folding surface was calculated. According to the change of the product σσe with the degree of branching, a possible explanation was presented to illuminate this diverse effect of different degrees of branching on crystallization. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

18.
The effect of surface cleanliness on the alkaline hydrolysis of poly(ethylene terephthalate) fibres was investigated using inverse gas chromatography (IGC) in conjunction with mass loss measurements and electron microscopy. The sizing agent was removed from the fibre surface by two methods: soxhlet cleaning in acetone and washing in an aqueous solution of a non‐ionic detergent. Alkaline hydrolysis was carried out using two concentrations of aqueous sodium hydroxide, 1% and 10% by mass. The measurement of the specific retention volume of undecane and the heat of adsorption using IGC indicated that the acetone cleaned samples were essentially surface contaminant free, while partial contamination of the surface by the sizing agent remained in the detergent cleaned samples. The presence of sizing agent significantly altered the degree of hydrolysis and the surface topography. The increasing values of the heat of adsorption indicated that significant surface hydrolysis increased the surface crystallinity. © 2000 Society of Chemical Industry  相似文献   

19.
The melting behaviour and the morphology of poly(ethylene terephthalate) crystallized from the melt are reported. In general, dual or triple melting endotherms are seen, and single endotherms are seen when the samples are crystallized above 215°C for long times. The location of the uppermost endotherm was found to be constant below Tc = 230°C, and above that temperature the location depends on Tc. Therefore, we have shown that samples of PET which are crystallized above Tc = 230°C contain perfect crystals only; below Tc = 230°C, they contain perfect and imperfect crystals. Scanning electron microscopy showed that the perfect crystals are the dominant lamellae in the spherulitic structure, while the imperfect crystals are the subsidiary lamellae in the spherulitic structure, The amorphous regions are located between individual lamellae.  相似文献   

20.
Chemical recycling of poly(ethylene terephthalate) (PET) in supercritical ethanol has been investigated. In the presence of water, under supercritical conditions (temperature and pressure above 516 K and 6,384 kPa, respectively) excess ethanol reacts with PET to form diethyl terephthalate (DET) as the main product. A laboratory‐made 0.1 L ‐batch reactor was used at 528 K under pressures from 7,600 and 11,600 kPa. After the required reaction times, the reaction products were analyzed by reverse phase high pressure liquid chromatography and nuclear magnetic resonance. It was found that PET is completely depolymerized into monomers in about 5 h. The influences of water, pressure, ethanol/PET weight ratio, PET sources, as well as depolymerization time were investigated. Maximum DET recovery yield was 98.5%. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 2009–2016, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号